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Introduction

In the early history of jet propulsion the principal noise source was associated with
the various mechanisms in the jet itself. Only in limited regions directly ahead of

the engine and over limited operating conditions were noise-generating mechanisms
related to the compressor important. The development of the turbofan engine, in
which a significant portion of the thrust is derived from the fan stage, led to a
reduction in jet noise and an increase in fan-compressor noise, thus exposing this
source as one of major importance in the overall noise signature of the engine. In

high-bypass-ratio turbofan engines the fan dominates the inlet-related noise, and
thus we will refer to fan-compressor noise simply as fan noise.

Figure 1 shows the various noise sources in a turbofan engine and the general
direction in which they are radiated. The fan is enclosed within a duct system

and propagates noise upstream to be radiated from the inlet and downstream to
be radiated from the fan exhaust. The acoustic system thus consists of the fan

noise source, the ducts (which may be of nonuniform geometry and which may have
acoustic treatment on the walls), and the exterior of the engine to which the acoustic
field is radiated. The prediction of the radiated noise, and the design of the acoustic

system to minimize this noise, must consider these elements. It is the purpose of this
chapter to discuss techniques for the modeling of duct propagation and radiation.
The source mechanisms are discussed elsewhere.

The fan duct in a typical turbofan engine, as shown in figure 1, consists of a
more or less cylindrical inlet duct (which may have a centerbody) and an annular
exhaust duct. Both the inlet and the exhaust duct are contoured for aerodynamic

and propulsive efficiency. In modern engines there are no inlet guide vanes ahead of
the fan, but there are struts or stators or both aft of the fan. The inlet duct and
the exhaust duct have a length about the same or less than the inlet diameter. For
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Figure 1. Major noise source8 of turbofan engines.

noise suppression purposes acoustic treatment is installed on the duct walls in both

the inlet and the exhaust duct, and in fact the treatment may cover most of the

available surface. The aerodynamic flow through the ducts can cover a wide range of

subsonic velocities, depending on the operating conditions of the engine. This flow

in the ducts is nonuniform. The inlet and the exhaust duct radiate acoustic energy

to free space through the nonuniform inlet aerodynamic flow field in the vicinity of
the nacelle. The radiation process is coupled to the propagation process within the
duct, so that in general the source and duct propagation and radiation should be
considered simultaneously.

Except in the most advanced design and analysis procedures, the source model
is considered to be independent of the propagation and radiation and is considered

to be known, providing input to the duct propagation and radiation calculations.

Furthermore, the duct propagation is generally considered independently of the

radiation. Hence, in tracing the history of acoustic design and analysis methods
for inlet suppression, it is found that the greatest emphasis has been on methods for

the prediction of attenuation in acoustically treated ducts with a high-speed mean
flow. Early work considered uniform ducts with uniform flow and was an extension of

procedures developed for ducts with negligible mean flow, which had been of interest

in connection with the acoustic design of air handling systems. It was soon recognized

that the boundary layer in the mean flow at the duct wall can have a significant
effect on the performance of acoustic treatment, so this phenomenon was added to

the physical model and appropriate analysis methods developed. The question of

duct nonuniformity, and the consequent nonuniformity in the mean flow, was then

considered, and a substantial step in the extent of numerical analysis necessary was
required.

The prediction of acoustic radiation from ducts can also be traced to investiga-
tions of air handling systems involving baffled and unbaffled pipes with negligible

flow. Design and analysis requirements for turbofan engines have inspired some
purely theoretical extensions of the early work by including the effect of an exhaust

flow (applicable to the fan exhaust duct, although originally motivated by propa-
gation through the jet). Approximation methods based on concepts of duct-mode
propagation angles have been developed for the prediction of the direction in which
peak radiation directivity occurs.

The development of computational methods in acoustics has led to the introduc-

tion of analysis and design procedures which model the turbofan inlet as a coupled
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system, simultaneously modeling propagation and radiation in the presence of real-
istic internal and external flows. Such models are generally large, require substantial

computer speed and capacity, and can be expected to be used in the final design

stages, with the simpler models being used in the early design iterations.

In this chapter emphasis is given to practical modeling methods which have been

applied to the acoustical design problem in turbofan engines. The mathematical
model is established and the simplest case of propagation in a duct with hard walls

is solved to introduce concepts and terminologies. An extensive overview is given of
methods for the calculation of attenuation in uniform ducts with uniform flow and

with sheared flow. Subsequent sections deal with numerical techniques which provide

an integrated representation of duct propagation and near- and far-field radiation

for realistic geometries and flight conditions.
A review of the status of duct acoustics in turbofan engines in reference 1 is

extremely complete up to its 1975 publication date. In this chapter we unavoidably

duplicate some of this discussion, with extensions representing advances since 1975.
However, instead of an exhaustive review, we attempt to document specific design

and analysis techniques of general utility.

The Acoustic Field Equations

In the following studies of duct acoustic propagation and radiation, modeling is
based on linearization of the equations governing the isentropic motion of a non-

viscous, non-heat-conducting perfect gas. The pertinent equations, in nondimen-

sional form, are as follows:

Continuity :

0p--+ v. (p'v*) = 0 (1)
Ot

Momentum :
OV* 1

0---i--+ (V*. V)V* = -TVp* (2)

Equation of State :

= _p (3)p, 1 ,

where the density p is scaled by Pr (a reference density), the velocity V is scaled by

Cr (the reference speed of sound), pressure p is scaled by pr e2, time t is scaled by

L/cr (where L is a suitable reference length), and the spatial coordinates are scaled
by L. In some applications a form of the energy equation is useful.

Energy :

op--+ v*. vp* v*) = o (4)
Ot
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The acoustic equations are obtained by considering small perturbations on a mean
state Po, Po, and Vo so that

*

P =Po+P

P* = Po + P

V* =Vo+V

The resulting acoustic field equations after second-order and higher order terms in
the small perturbations are ignored, are as follows:

Acoustic Continuity :

Op
o-i + v . (poV + Vop) = o

Acoustic Momentum :

OV 1 1
0---/-+ Vo. 27V + _Tp + V • VVo p_Tpo = 0

po "Tpopo

Acoustic Energy :

Op

o-[ + Vo . Vp + v . Vpo + "WOW. v) + _p(V. Vo) = 0

(5)

(6)

(7)

Acoustic Equation of State :

Po c2opP = "7--P = (8)
Po

In equation (8), Co is the nondimensional local speed of sound in the mean flow.

In the acoustic radiation model the mean flow and the acoustic perturbations are
taken as irrotational. In this case

V* = V_

V = V¢

Vo = V¢o

where ¢ is the velocity potential nondimensionalized with respect to crL. The

continuity and momentum equations and the equation of state are used in this case.

The continuity equation h)llows directly from equation (5).

Acoustic Continuity Equation (Irrotational) :

Op
a--[ + V . (Pore + pV¢o) = 0 (9)
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In the case of the momentum equation, the implication of irrotationality is used

(V x V = 0), as is the isentropic equation of state (dp*/dp* = (p,)_-i = c,2), to
obtain

OV* 1 c.2

o---T + _ v(v* • v*) + v -o'7-1

where c* is the nondimensional local speed of sound. In terms of the velocity potential
this carl be written

[Oq) 1 (V_.Vq)_M2)]c'2 = 1- ('7- 1) -0_-+_

where the arbitrary function of time which arises is evaluated at infinity, where

the reference conditions Pr and Cr are also defined. At infinity the nondimensional

velocity is the Mach number Moo. The nondimensional speed of sound c_c is unity.

Linearization yields the following isentropie relation for the mean flow:

%2=1_'7-1 (V¢o'V¢o-M_)
2

For the acoustic fluctuations, the following equation is used:

Acoustic Momentum Equation ( Irrotational) :

or

po(00 )p= -C_o _i + V¢o V¢

(10)

(11)

(0¢ )P=-Po -_-+V¢o'V¢ (12)

In equations (11) and (12), po is the nondimensional local density and co is the

nondimensional local speed of sound in the mean flow.

Propagation in Uniform Ducts With Hard

Walls

In the case of a uniform duct, with axially uniform mean flow, equations (5), (6),

and (8) can be combined to yield the convected wave equation

o-/+ 0x P= V2p (13)

The nondimensional velocity in this case is the local Mach number M and the nondi-

mensional speed of sound is unity. This follows because of the nondimensionalization
and because of the flow field uniformity. Equation (13) simplifies to the classic wave

equation in the absence of mean flow (i.e., M = 0).

As shown in figure 2, attention is restricted to a duct of circular geometry with

a cylindrical coordinate system (z, r, 0). For a duct with hard walls the boundary
condition at r = 1 is that the acoustic particle velocity normal to the wall is zero.
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Figure 2. Geometrical, acoustical, and flow conditions for circular duct.

The coordinate r is scaled by the duct radius R. The acoustic momentum equation

in the r direction shows that. this is equivalent to the boundary condition at r = 1
as follows:

Op
--_0

Or

At the duct centerline the boundary condition is that the solution should remain
finite. It is assumed that an unspecified noise source introduces acoustic disturbances

harmonically with time dependence exp(ir/t), where r? = wR/cr, ¢o is the dimensional

excitation frequency, and R is the duct radius. The resulting acoustic fluctuations
in the duct can then be written

p(x, r, O, t) = P(x, r, O) exp(ir/t)

where P(x, r, O) now satisfies a convected Helmholtz equation
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a2P aP

(1 - M 2) _ + V2cP - 2irIM -_x + rl2P = 0

with boundary condition at r = 1 of

(14)

OP
-0

Or

and Vc is the gradient operator in the polar coordinate system (r, 0) (the coordinates
in the duct cross section). Solutions to equation (14) can be written in terms of

traveling waves as follows:

Pmn(X,r,O) = P(r) exp(±imO) exp(-ikxmnx)

where

1[ i )]_/ - 1 - M2 -M + 1 - (1 - M 2) \(Emnrl 2

The term P(r) is then governed by the Bessel equation

d2P ldP( m 2 )dr 2 +r___r + _2____ P=0

with boundary condition at r = 1 of

(15)

dP

dr

The solutions to this equation, finite at the origin, are Jm(tCr), Bessel functions of

the first kind of order m. The eigenvalues gmn are defined by

' x (16)Jm( mn) : 0

A solution to equation (14) and the hard-wall boundary condition is therefore

Prnn(X, r, O, t) = PmnJm(_mnr) exp[i(r/t + rnO - kxm,_x)] (17)

There are an infinite number of such solutions, corresponding to integer values of m

and to the infinite number of values t_mn defined by the eigenvalue equation (16).
These solutions are referred to as modes of propagation. At a fixed x, angular

traveling waves (or spinning modes) of the form

p _ exp[i0?t + mO)]

are observed, while at fixed 0 axial traveling waves of the form

p c( exp[iO?t- kxm.x)]

are observed. A given mode of propagation is thus the combination of a spinning

mode and an axial traveling wave.
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The parameter kz is referred to as the axial wave number and can be real or

complex depending on values of M, Xmn , and _7. For

(1 - M 2) < 1

kz is real, and for most values of M, tCmn , and r/ in this range kx has a positive

and a negative value corresponding to axial waves propagating in the positive and
negative x-directions. If M > 0, over the range of parameters for which

l<(nmn)2 1<--
\ r/ / 1-M 2

there are two negative values of kx, but an acoustic energy argument (ref. 2) can
be used to show that the positive sign in equation (15) still corresponds to acoustic

power transmitted in the positive x-direction and the negative sign corresponds to

acoustic power transmitted ill the negative x-direction. A similar result showing two
positive values for kx applies if M < 0.

An interesting phenomenon occurs when

>l

and kx becomes complex:

kxm,, _ 1 -M i i (1-M 2) -1
r] 1 - M 2

In this case the solution of equation (17) becomes

Pmn(X,r,O,t) = PmnJm(tCmnr) exp{i[_t ±mO - Re(kx)x :l: hn(kx)x] }

where

Re(kz) -
Mr;

1 - M 2

Irn(kx)- 1_-_T_i(1-M2)(_-_)2-1

are the real and imaginary parts of the complex wave number kzm,_. The traveling

wave is attenuated with distance, tile negative sign indicating the solution in the

positive x-direction and the positive sign indicating tile solution in the negative x-
direction. An energy argulnent (ref. 2) shows that no acoustic power is associated
with these modes.

Acoustic duct modes which are attenuated with distance and carry no acoustic

power are referred to as being "cutoff," while modes which propagate in the usual

sense are said to be "cut on." Reference 3 has introduced the terminology "cutoff
ratio" for the parameter
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]_mft z

I_mn_

When the cutoff ratio exceeds unity, the frequency is high enough that the mode

corresponding to tCrnn is cut oil. Values of cutoff ratio less than unity identify modes
which are cutoff.

The exact physical phenomenon occurring in cutoff modes which produces

attenuation with no source of dissipation is difficult to see in the presence of flow.

However, reference 4 shows that in the case without mean flow the acoustic field of

a piston driver in a duct is an entirely reactive field from which no acoustic power

escapes when the cutoff ratio is less than unity.

In the classic work of Tyler and Sofrin (ref. 5), it is pointed out that if the noise

source is such that only modes with cutoff ratios less than unity are produced, then in

principle no acoustic power is propagated from the source. This could conceivably be

accomplished with an isolated rotor, in which case a judicious choice of the number

of blades and the rotational speed can ensure that the cutoff ratio is less than unity.
However, the inevitable presence of struts and inlet or outlet guide vanes may produce

interaction tones which propagate. In addition, the finite length of the inlet and

outlet ducts allows the basically reactive field to radiate some power to the far field.

Another physical picture of the propagation, which is exact in a two-dimensional

duct and is approximate in a circular duct, is that of viewing the acoustic field as the

result of the interference of plane waves propagating at an angle to the duct axis and
therefore reflecting from the duct walls. The angle of propagation is directly related

to tile cutoff ratio (ref. 6). When the cutoff ratio is unity, the angle of propagation
is at 90 ° to the duct axis and the plane-wave propagation is just across the duct, a

situation in which it would not be expected that acoustic power would be propagated
down the duct.

Rice (ref. 3) also used an extended concept of modal cutoff ratio to good advantage

in correlating attenuation in lined ducts and in estimating the direction of the major
lobe of tile radiation from a duct termination. This is discussed in a subsequent
section.

The modal solutions of equation (17) are solutions which can exist within the duct.

Whether they are actually present depends on the source and boundary conditions

(so far not specified) where the duct terminates on the x-axis. In the case of an

infinite duct (i.e., one extending -oc < z < oo), only waves traveling or decaying
away from the source can be present. For a source at x = 0, only solutions with wave

numbers appropriately defined for propagation or decay for x > 0 exist for x > 0,

and those defined for propagation or decay for x < 0 exist for x < 0. This makes

it necessary to choose the proper sign in equation (15). We can designate the wave

numbers by k+x,_ or k_-mn to indicate whether they apply to solutions traveling or
decaying in the positive or the negative x-direction. Thus, for x > 0 an appropriate
solution is

Pmn(X, r, O, t) = P+n.lm(_mnr) exp[i(r/t + mO - k+mnZ)]

and for x < 0 an appropriate solution is

Pmn(X,r,O,t) = PmnJm(Nmn r) exp[i(r/t +mO - k_mnx)]
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In the case of a duct of finite length, boundary conditions must be specified at

the terminations or the duet. model must be coupled to some other description of

the acoustic propagation beyond the termination. In any case, the terminations

introduce reflections, and solutions corresponding to both k + and k; can be present
at any point in the duct.

In most eases it is not possible to write a boundary condition at a duct

termination. For example, in the case of a duct terminating at free space, the

acoustic response of the medium outside the duct establishes the boundary condition.
Therefore the duct and radiation problems must be solved simultaneously. This

matter is discussed more in a subsequent section.

Because of the difficulty with precise definition of termination conditions, two

approximate ones are often introduced. At low frequencies the assumption of zero

acoustic pressure for a termination at free space is reasonable. This "pressure release"

boundary condition produces complete reflection of traveling waves and does not

permit any acoustic power to escape from the duct. It is only useful for the study of
standing waves (the interaction of waves traveling in both directions) in ducts where

only the plane wave propagates.

The much more common assumption is that the termination is reflection free or

that the duct is of infinite length. This assumption is difficult to justify for unlined

ducts in which traveling waves are not attenuated; however, for relatively high

frequencies (wavelength small relative to the duct radius) and for frequencies other

than those approaching cutoff frequencies, reflections from open ends are small. For

lined ducts, as shown subsequently, reflections may be even tess important because
the incident amplitudes are considerably reduced before reaching the termination.

General solutions to the convected wave equation for the circular duct can be

given as a superposition of the eigenfunction solutions (eq. (17)) to yield

p(x,r,O,t) =

0(3 O0

Z Z PmnJm(gmnr) exp[i(rlt- mO - k_mnx)]
m=--o0 n_--O

O0 O0

p(x,r,O,t) = Z Z Jm(tCmnr) exp[i(rlt-toO)]
m------oo rt=O

x [P+n exp(-ik+mn x) + Pmn exp(-ik;mnX)]

The values of the amplitude coefficients depend on the nature of the source. For

example, if we were interested in acoustic propagation in the positive x-direction in
an infinite duct, for which there is no reflection at the termination and therefore no

waves propagating in the negative x-direction, the series would be

p(x, r, O, t) =

O0 O0

Z Pt_nJ_(gt_nr) exp[imN(f_t-0)] exp(-ik+nx)
m=--00 n----O

for a noise source consisting of a simple rotor with N blades turning at angular
speed f_. For this equation, # = mN, the k + are limited to the proper choices for

x/zn

solutions with x > 0, and the modal amplitudes Pmn depend on the blade loading.
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In this case the solution is spinning modes at frequency mNfl, locked in phase with

the rotor. For interaction of rotor and stator or of rotor and inlet guide vanes, all

modes are not spinning in the same direction and with the same angular speed as the

rotor. Reference 5 gives an excellent description of the influence of the noise source

on the modal character of the acoustic propagation in the duct.

Attenuation Calculations in Lined

Uniform Ducts

In the previous section fundamental properties of sound propagation in uniform
hard-wall ducts with uniform flow were introduced. In this section we deal with the

more practically important problem of the calculation of the axial wave number, and

hence the attenuation, in uniform ducts with acoustically treated walls. The ducts

considered in general contain a mean flow which in the least restrictive case can have

a sheared velocity profile approximating the gross effects of the viscous boundary

layer.
Attenuation calculations for acoustic transmission are required in aircraft turbo-

fan engine inlet and exhaust ducts. Problems of this type are demanding not only
because of the acoustic environment involved, but also because of requirements for

computational efficiency and accuracy for design studies.

The duct geometry specifically considered in this discussion is circular. Where

appropriate, results are also quoted without proof for two-dimensional rectangular

geometries. Most of the results can be directly extended to annular and three-
dimensional rectangular ducts. Figure 2 shows the pertinent geometrical details for
the circular duct.

The Physical Problem

The uniform duct carries a mean flow which is uniform axially but nonuniform

radially. The mean density and pressure are assumed to be uniform. The sound

transmission problem is one of modeling acoustic fluctuations on this mean flow.

This representation is consistent with the developments of reference 7, which starts

from the full viscous equations of compressible fluid mechanics and, with a series of

approximations and assumptions, arrives at this model, which captures the important
features of the refractive effects of sheared viscous flow on sound propagation.

The field equations which are appropriate are equations (5), (6), and (8),

restricted to the case when Po, Po, and Co are constant (Po = 1, Po = 1, and Co = 1)

and Vo = M(r)e_:

Op Op
0--/+ M _xx + V. V = 0 (18)

OV OV dM

a---i-+ M _x + Vp + d--_-vrex = 0 (19)

where

V = Vxex + Vrer + voeo

Equations (18) and (19) can be combined as
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(o 0)3 (o o) dMo2p_-_+M_ P= O-[+M_x V2p-2 dr OxOr

Note that if M(r) is constant, dM/dr = 0 and equation (20) becomes

_--[+M _xx _-_+M _xx -V 2 p=O (21)

For harmonic excitation proportional to exp(i_/t), with 7/ = wR/cr = 27rfR/cr
(where w = 27rf is the driving frequency), we seek solutions in the form

p(x, r, O, t) = ])(x, r, O) exp(i_Tt)

The resulting equation for p(x, r, 0) is

( 0)i_] + M _ b = i_7 + M Ox V2p-2

Traveling wave solutions in the form

dM 029

dr Ox Or

_b(x, r, O) = P(r) exp(+imO - ikxx)

are sought. The term P(r) satisfies the ordinary differential equation

dr 2 + + (1--_j) _rr -_r + 02 1-M - - r2 jP=O

(22)

The boundary condition at the duct wall (r = 1) is based on the assumption
that the lining is locally reacting and that the relationship between nondimensional

pressure and nondimensional lining particle velocity vv is

p Z
- (23)

Vv prCr

where Z/prCr is the wall nondimensional specific impedance. At the duct wall the

fluid particle displacement and the wall particle displacement are the same. Note

that because of the convection effect of the mean flow, the fluid particle velocity is
the convective, or substantial, derivative of the fluid particle displacement. When

the Mach number at the wall vanishes so does this convection effect. Thus, if _ is
the particle displacement of the wall directed into the wall in the inward normal

direction u, then

V'v= (i_+ M O)_xx ( (24)

where V. v is the fluid particle velocity in the normal direction of the wall and

directed into the wall. Since the nondimensional wall particle velocity vv is related
to the particle displacement by
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equation (24) becomes

vu = irk

(V'u= 1- _10x/ VU (25)

We can now replace v, by using equation (23) to obtain

(.M0)V.u=A 1-_ p

where A = PrCr/X is the wall nondimensional specific acoustic admittance.
In the case of the circular duct, v_, = yr. The radial component, of the acoustic

momentum equation (19) is

-_ + Ox Vr -- Or

This is used to rewrite the boundary condition (eq. (25)) entirely in terms of the

acoustic pressure:

Op_ irlA(I_iM O) 2Or ---_ -_x P (26)

Equation (26) is to be enforced on solutions of equation (22) at r = 1. The

boundary condition at r = 0 is that the solution should remain finite. The field

equation (22), the boundary condition equation (26), and the finiteness condition at

r = 0 constitute an eigenvalue problem of finding values of the wave number kz such

that the homogeneous differential equation and homogeneous boundary conditions

have a nontrivial solution. We now consider special cases of importance.

The Eigenvalue Problem

Sheared Flow With No-Slip Boundary Conditions

It is assumed that the sheared velocity profile is known, so that we are given

M(r) and dM/dr and specify M = 0 at the duct. wall. In the circular-duct case we
have shown that the field equations can be combined to yield

d2p 2(kx/_?) dP

dr 2 + +l---(---M-_z/r/) _rr _-r

which is equation (22). The boundary conditions at r = 0 and r = 1 are

P(O) = Finite

dP

dr (1) = -i_IAP

(27)
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Since many of the results in the literature are quoted for two-dimensional ducts, it

is appropriate to state here the eigenvalue problem for this case with a lined wall at
y=l and a hard wall at y=0as

dy 2 + 1-(Mkz/7?)dy dy + 1- _-/ - _ P=O

with boundary conditions at y = 0 and y = 1 of

(28)

d----_-(0)= 0

dP

dy(1) = -irlAP

(29)

where r/= ¢zb/cr = 27rfb/cr, where b is the duct height.

A two-dimensional duct with two symmetrically lined walls at y = 1 and y = -1
can be treated by also solving the boundary value problem with P = 0 at y = 0. The

eigenfunction solutions from the boundary conditions in equations (29) are then the

symmetric solutions and those generated with P = 0 at y = 0 are the antisymmetric
solutions.

Uniform Mean Flow

In this case it is assumed that the mean flow Mach number is uniform across the

duct. Therefore, dM/dr = 0. An interesting preliminary result can be obtained from

equations (18), (19), and (21). In addition to equation (21), equations (18) and (19)
can be combined to yield

_-t+ _xx 0--t + M Oxx -VxVx V=0 (30)

Equation (19) is used to show that

(0 M0)+ _x (V x V) = 0 (31)

This implies that vorticity is convected or it vanishes. In combination with

equation (30) this means that the velocity field satisfies

(oq /))3 ( )___ + M_xx V_V2 0 M O+ _-_ V = 0 (32)

From equation (30) or (32) it is shown that there are solutions for which

(0 0)_--/+ M_x x V=0

From equation (19), these solutions have Vp = 0, which hnplies that the perturbation
pressure field vanishes, and therefore
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V.V=0

Hence, there exists a class of velocity solutions satisfying the incompressible conti-

nuity equation, with vanishing pressure perturbations which are convected with the
mean flow. For harmonic traveling waves of the form

this means

V(x, r, O, t) = V(r) exp(±imO) exp[i(r/t - kxx)]

(it/- iMkx)V = 0

or

r/ _R
-if-

The traveling waves are thus of the dimensional form

V(x,r,O,t) = V(r) exp(+imO) exp{iw[t- (x/V)l }

(33)

This is a disturbance for which in general V x V :/: 0 and which is propagating at.

tile mean flow velocity. This solution with vorticity is convect.ed with the flow. This

is termed a hydrodynamic disturbance.
A second type of solution has V x V = 0 (eq. (31)) and is therefore irrotational.

These solutions satisfy

O MO) 2+ p-V2p=O

and are the acoustic fluctuations. It is thus observed that in uniform flow hydro-

dynamic (rotational) disturbances and acoustic (irrotational) fluctuations can be

separated.
The above observations are not generally true when the flow is sheared, and

in that case acoustic disturbances are not irrotational (ref. 8). However, there are

still hydrodynamic disturbances in the sheared flow. Reference 8 discusses this in

the case of a linear shear profile. Tile main point to be made here is that the

hydrodynamic solutions are contained in the field equations, even with dM/dr = O,

although the solutions are not generally retained in the development of the convected

wave equation.
We now write the eigenvalue problem for the acoustic disturbances in the case of

uniform flow. In the circular-duct case,

1 d (rdP _ { [( _)2 (__)2] m 2}r_\-_r]+ r/2 1-M - ---_-ff- P=O

with boundary conditions at r = 0 and r = 1 of

(34)

P(0) = Finite

(dr (1) =-ir/A 1- M P

(35)
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and in the two-dimensional case,

+ 1-M - P 0
dy2 =

with boundary conditions at y = 0 and y = 1 of

dy (0) = o

dy -_/ P

(36)

(37)

As noted previously, the boundary conditions (eqs. (37)) generate symmetric solu-
tions for the duct spanning -1 < y _< 1. Antisymmetric solutions arise from P = 0
at y=0.

No Mean Flow

For no mean flow, M = O. In the circular-duct case, the eigenvalue problem is
given by

1 d (rdP_ { [r/2 1- (__)2] rn2}r dr \ dr] + --_-

with boundary conditions at r = 0 and r = l of

P = 0 (38)

P(0) = Finite

dP

_r(1) = -irlAP

In the two-dimensional duct,

with boundary conditions at y = 0 and y = 1 of

dP

dy (0) = 0

P=O

(39)

(4o)

(41)
dP

d---y-(1) = -i_?AP

Antisymmetric eigenflmction solutions follow from P = 0 at y = 0, as noted
previously.

The boundary value problems described by equations (28) and (29) and (34) to
(41) are eigenvalue problems in which we seek nontrivial solutions to the differential

equation which satisfy the specified boundary conditions. The eigenvalue in each case
is the axial wave number kx/t l which contains the essential attenuation information.
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In each case the boundary value problem defines an infinite sequence of eigenvalues.

Corresponding t.o each eigenvalue is a nontrivial solution, or eigenfimction, which

defines a transverse pressure variation Pmn(r) or Pn(Y) which propagates according

to

Prnn(X, r, O, t) = Pmn(r) exp[i(r/t -t- rnO - kxmnx)] (42)

or

pn(x,y,t) = Pn(Y) exp[i(rlt - kz,_x)] (43)

Tile amplitudes of the eigenfunction are suitably normalized. Each such solution de-

fines a mode of propagation. In general, the acoustic field in a duct is a superposit.ion

of these nodes with amplitudes dependent on the source and termination conditions

or

oo oo

p(x,r,O,t)= E E AmnPmn(r) exp[i(tlt:t:mO-kxmnx)] (44)
m=--oo n=O

O0

p(x,y,t) = _ AnPn(y) exp[i(r/t - kz_x)] (45)
n=l

As previously discussed, some of the solutions correspond to propagation in the

positive x-direction, while the remainder correspond to propagation in the negative
x-direction.

The eigenvalue problems so described are not true Sturm-Liouville problems

so that there is no general statement about orthogonality of the eigenfunctions.

However, in the no-flow case it can be shown that

or

fo rPmn(r)Pmk(r) dr = Mnn _nk

fO Pn(Y)Pk(r) = Mnn 5nk
dr

where 5nk = 0 for n ¢ k,6nk = 1 for n = k, and

_01Mnn = rp2n dr

or

1
Mnn = p2n(y ) dy

This orthogonality is not found in general when mean flow is present. The

eigenfllnctions are orthogonal for any uniform mean flow when the walls are hard

(A = 0).
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Calculation of Attenuation

In all the eigenvalue problems postulated we have sought solutions in the form

p(r, x, t) = P(r) exp[i(r/t - kzx)] (46)

Here, the harmonic time dependence is explicitly included. The term r is the vector

of coordinates transverse to the duct axis. Attenuation is defined as the change

in sound pressure level (SPL) over a specified length of duct. In the present case

only ducts without end reflections are considered, so that attenuation is based only
on transmitted modes. Furthermore, the attenuation is considered in each mode

separately. The extension to multimode propagation is straightforward but yields a

considerably complicated result. SPL is defined as

P

SPL = 20 log _oo

where P is the root-mean-squared acoustic pressure and Po is a suitable reference

(by convention for aeroacoustics, this is taken as Po = 20 pPa). The change in SPL
over length Ax is

A SPL = 20 log _---P2= 20 log
P1

If kx = c_ + i_, it follows that

P2(x_ + Ax) _ exp(/_ Ax)
p,(x)

Thus,

w

/'(x + A.)

p(x)

A SPL = (20 log e)/_ Ax = 8.686f_ Ax (47)

For a decaying wave,/_ is negative if the propagation is in the positive x-direction.

Thus, calculation of attenuation requires the solution of tile eigenvalue problem

for kz.

Solution of the Eigenvalue Problem

In this section we discuss techniques for the solution of the eigenvalue problems

posed in the previous section. Emphasis is on numerical techniques, although it is

appropriate to refer to some methods which were developed prior to the availability
of computer systems.

No Mean Flow

When the mean flow vanishes, the eigenvalue equation for the circular duct is

equation (38) and the associated boundary conditions. This can be written in slightly

modified form to yield

d2pldP()m 2dr 2 + -r _r + _c2 -_ P = O (48)
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with boundary conditions (eqs. (39)) at r = 0 and r = 1 of

P(0) = Finite

where

dP

dr (1) = -i_?AP

Solutions to equation (48), satisfying the boundary condition at. r = 0, are Bessel
flmctions of tile first kind of order m:

P = Jm(_r)

The eigenvalue K is determined from the boundary condition at the outer wall (r = 1)

according to

Jim (_-----_)= -i_?A (50)
Jm(_)

There are an infinite number of discrete eigenvalues _ of equation (50). If these are

enumerated by the angular mode number m and the radial mode number n, then

from equation (49) the modal wave numbers are given by

(-_) mn---- -t-il - (_-_) 2 (51,

The equivalent two-dimensional problem which follows from equation (40) leads to

the eigenvalue problem

tan t¢ = i_?A

and the corresponding sequences of eigenfunction solutions

(52)

Pn = cos t_ny

These are also the symmetric solutions for -1 < y < l, as previously noted. The

antisymmetric solutions follow from the eigenvalue equation _ cot g = -i_TA and the

eigenflmction solutions are sin t%y. Equation (51) for the axial wave number still
holds in the two-dimensional case.

The determination of the eigenvalues of equation (50) or (52) is a conceptually

simple proposition. In practice it is not simple because of the topography of the

complex functions of the complex variable _ the zeros of which are the eigenvalues

and because of the complex arithmetic which must be performed. Because of these

difficulties, early researchers were led to consider approximations. Sivian (ref. 9)

and Molloy (ref. 10) arrived at essentially the same end result by different means.

They used a one-dimensional propagation assumption. Sivian cast the problem as

an electrical analog and Molloy used the acoustical equations directly, making his
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results generally more accessible to the present generation of acousticians. Molloy

also provided charts from which attenuation can be obtained directly. No restriction
was placed on the shape of the duct cross section and the lining could have been

circumferentially varying, provided the assumption of plane-wave propagation was

adhered to. This is a low-frequency approximation consistent with the restriction to

nearly plane waves and one would expect it to require relatively small wall admittance

to maintain the planar approximation. This approach has the advantage of producing
a direct calculation formula for the attenuation.

Perhaps one of the best known estimates of duct attenuation is presented by
Sabine (ref. ll). He used the Sivian-Molloy results and his own experiments on

rectangular ducts with relatively weak attenuation to establish the attenuation
estimate

A SPL _ 12.6c_0.25pe/s (53)
Ax

where Ax is the duct length in feet, ct is the reverberation chamber absorption

coefficient for the duct lining, De is the lined perimeter in inches, and S is the cross-

sectional area in square inches.

The first direct attack on equation (52) for rectangular ducts appears to be

presented in Morse's well-known work in references 12 and 13. Rather than attempt

to solve equation (52) explicitly, Morse treated it as a conformal transformation

from the n plane to the admittance plane. He effectively picked values of n and
computed values of A. Level curves of the complex admittance were then drawn

on the plane whose axes were the real and imaginary parts of n. Morse and Ingard

(ref. 13) also presented charts from which _ and hence kz/r] can be determined.

They used an entirely different notation and presented the plots in a format so that
tile (:harts can be used for one or two lined walls. Great care must. be exercised

to flllly understand the proper chart interpretation. Cremer (ref. 14) also gave a

thorough discussion of the chart procedure in the rectangular-duct case. He discussed
the importance of branch points of the conformal transformation in determining an

optimum attenuation based on the coalescing of two modes of propagation.

In the circular-duct case, equation (50) can be rewritten through use of a

recurrence relation for the Bessel function derivative to yield

Jm-l( )
n Jm(n) m=-irlA (54)

Note that if m = O, J-l(n) = -Jl(g). Morse and Ingard (ref. 13) also presented

charts for this case. Reference 13 presents a Morse Chart with m = 0 and m = 1,

again with a different notation. Molloy and Honigman (ref. 15) also addressed the
circular-duct problem and apparently first produced what; is effectively a Morse Chart
for the m = 0 case.

A feature of the Morse Charts which makes them particularly useful in appli-

cations is that only a single chart is needed for all duct configurations. Only _?A

is required. This emt)odies the complete specification of the frequency, duct size,

and lining admittance. This feature is lost when mean flow is present, as shown
subsequently.

What appears to be the first attempt to produce a direct solution of equation (52)

in the rectangular-duct case is presented in reference 16. The approach was to expand
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the eigenvalue equation in a power series in x and then use a standard technique to

invert the power series to obtain a power series defining r/.
A contribution of substantial importance for future investigators was made in

reference 17. Addressed therein was the problem of axially symmetric propagation

ill a circular duct, for which equation (54) becomes

']1 (_;) (55)-- irlA
Jo(_c)

If the definitions

i_TA
y= --

2

are introduced and if equation (55) is differentiated with respect to y, through use of
recurrence relations for Bessel function derivatives, the following differential equation

for w results:

(w v2) = w (56)+

Reference 17 sought the lowest mode eigenvalue for m = 0 and thus sought the

solution of equation (55), which at y = 0 has w = 0. It used a power series expansion,

and under the assumption that y is small, it found the solution is approximated by

w = 1 - exp(-y)

For present applications the reference 17 result is of limited value, but Rice

(ref. 18) has extended it to higher order symmetric modes by considering series

solutions having initial conditions at. y = 0, which are the hard-wall eigenvalues

for any desired number of modes. He also set the problem up specifically for

large admittances and used initial values corresponding to the perfectly soft-wall

eigenvalues. Convergence is a problem in either case near the branch cut delineating
the modal regions, and a common nonlinear equation solving routine is used when

this is encountered.

Benzakein, Kraft, and Smith (ref. 19) and Zorumski and Mason (ref. 20) have ex-
tended the method to nonsymmetric eigenvalues and have used numerical integration.

The differential equation derived by differentiation of equation (50) or equation (54)

and the use of recurrence relations for the Bessel function derivatives is

d(tc/rl) it¢- (5z)
dA (_2 _ m 2) _ (r/A)2

This equation is integrated numerically with starting conditions corresponding to

Re(A) = 0. When Re(A) = 0, equation (50) has only real eigenvalues which are

easily found with a real search routine to yield the starting values for x. The
differential equation is then integrated along a path with Im(A) = Constant. If

A = Re(A) + iIm(A) is the actual admittance, then the integration is along the path
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A = x + ihn(A) (0 < x < Re(A)), and the value of _ when x = Re(A) is the desired
eigenvalue. Reference 20 shows some example calculations, but little is stated about
the performance of the method.

Doak and Vaidya (ref. 21) have considered the nature of the eigenvalues of

equation (50) in the circular-duct case and have looked at approximations of
particular interest in the limit of small r/A and large A.

Perhaps the most obvious eigenvalue solution technique, the simple Newton-
Raphson iteration, is notoriously unreliable as a general-purpose method for cal-

culations involving many modes. This is because of the topography of the function

for which zeros are sought. In certain instances very accurate starting values are
required if convergence to a nearby root is to be achieved, and all users will attest to

numerous instances when the same root is found with two different starting values

or when unwanted roots are found. Christie (ref. 22) has published his approach to
the use of the Newton-Raphson iteration to find the lowest order mode for a rectan-

gular duct. He starts at low frequency. The lowest eigenvalue has I_1 << 1, where

equation (52) can be written for Ixl << 1 (the lowest mode eigenvalue) as

_2 = irlA

The frequency is incremented and this result is used as the next starting value. This

proceeds until tile desired frequency is reached. This type of incrementing process

minimizes the chance of unpredictable convergence. For higher order modes starting

values ascending in integer multiples of lr could be used. The Newton-Raphson

iteration is particularly useful for refining eigenvalue estimates arrived at by other
methods, such as the integration scheme of reference 20.

Other methods which have appeared in the literature to deal with the eigenvalue
problem come under the general category of diseretization techniques. In these

methods the differential equation which governs the transverse variation of pressure

in the duct (e.g., eq. (38) or (40)) is replaced by a set of algebraic equations

based on a finite-difference method (FDM), a finite-element method (FEM), or a
method of weighted residuals (MWR). These methods are probably too costly for

circular geometries with uniform linings and rectangular geometries with uniform

linings on each wall. However, they may be the only approach when the lining
varies peripherally in an arbitrary way or when the duct cross section is not

circular, rectangular, or some other geometry for which the Helmholtz equation

has separable solutions. These methods are considered in more detail in subsequent
sections. However, explicit examples of their use in the no-flow case can be found in
references 23 and 24.

Uniform Mean Flow

When uniform mean flow is present, the eigenvalue problem becomes somewhat

more complicated. The reduction to a transcendental eigenvalue equation follows

exactly the procedure previously described. The analytic representation of the

transverse pressure variation remains unchanged, but the eigenvalue equations
become more complex. In the circular-duet case,

(_-- = -irlA 1- M--
Jm (_)

(58)
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with

kx _ 1 -M+ 1-(1-M 2)
_7 1 - M 2

In the two-dimensional-duct case,

_tan_=irlA(1-Mkz) 2-r_ (59)

with kx/rl as defined in the circular-duct case. Both of these eigenvalue problems can
be viewed as a single, very complicated transcendental equation (if kz/rl is inserted

into eq. (58) or (59) from the auxiliary equation) or as a coupled pair of equations.

The Morse method (refs. 12 and 13) becomes very unattractive for general
calculations because the chart must be a conformal transformation from the n plane

to tile r/A plane, with Mach number as a parameter. Thus, a separate chart for
each Math number is required. This approach has been used, but direct eigenvahm

solutions are certainly of more general interest.
Reference 25 presents an interesting approximate solution technique in its study

of bulk liners with an infinite backing space. This case yields a purely resistive lining,
and with certain restrictions it arrived at the eigenvalue equation

_tan_=ir_A(1-Mk-_)

with kz/rl as previously defined in connection with equations (58) and (59). Note
that the quantity 1 - M(kx/r_) appears to the first power and corresponds to a

boundary condition based on continuity of particle velocity. (See the discussion

of eqs. (23) and (24) regarding particle velocity and particle displacement.) This

approach involved introducing an approximation for the tangent function and then
obtaining a direct algebraic solution of the resulting equation.

An early direct eigenvalue solution was presented in reference 26. The method,

applied to a two-dimensional duct, considered first the no-flow case. The no-flow

eigenvalues were quickly estimated from a Morse Chart and used as initial estimates

for a simple Newton-Raphson iteration. Eigenvalues thus determined are initial
estimates for a case with a slightly incremented Mach number. Equation (59) is

then solved by a combination of relaxation and Newton-Raphson iteration, the right-

hand side being constructed from a previous estimate of kx/rl to form an effective

admittance. At each stage of relaxation the Newton-Raphson iteration is used to

calculate a new _; and kz/rl. Relaxation is carried out until convergence occurs. The

Mach number is then incremented and the procedure repeated until the final Mach
number is reached. The method was used for a number of calculations with little

difficulty, but it has the disadvantage of requiring a solution for the no-flow problem.
It is thus not a stand-alone method.

The approximation scheme developed in reference 21 for the circular duct in the
no-flow case was extended to the case when flow is present. This extension first solved

the problem for a in the zero admittance case, and under the assumption of small r/A
it used this solution in equation (58) to evaluate the right-hand side. This yielded

a no-flow problem with an effective admittance to which the previously derived
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approximation scheme for small r/A was applied. If tile solutions were iterated to

make successive approximations converge, the principle would have been essentially
that in reference 26.

Ko (ref. 27) has inade extensive calculations for the eigenvalues in a rectangular
duct with two opposing walls lined. For symmetric modes the two-dimensional

eigenvalue equation (59) applies, and for antisymmetric modes a second eigenvalue

equation involving the cotangent applies. Ko's method of solution involves beginning
with the nearly hard-wall case (A = 0) and using the eigenvalues so determined

as initial estimates for a Newton-Raphson iteration. The driving frequency is
incremented from zero to the required value, but Ko did not. fully specify the manner

in which the starting values are assigned with each new frequency increment. In
reference 28, Ko reported the same type of method and results for a circular duct.

He did not conlment on the reliability of the Newton-Raphson approach, and this
could be substantially affected by the incrementing and initial guess procedures.

A refilmment of the Newt.on-Raphson iteration scheme has been used in refer-

ence 29. Instead of a Newton-Raphson iteration, a second-order method known as

Bailey's method (ref. 30) was used, which is different in that it requires a second

derivative but is used in exactly the same way as a Newton-Raphson iteration. In
addition, a detailed study of the topography of the Morse Charts for both zero and

uniform mean flow was made. In the case of mean flow, the Morse Charts are severely

distorted with increasing Math number and expand across the Re(R) axis (at M = 0
all permissible solutions lie in one quadrant in the upper half-plane of to). The start-

ing point in the analysis is the M = 0 case. Based on considerable investigation, the

Morse Chart (which is universal for any rlA when M = 0) is divided into subregions.

Depending on the given value of r/A, the starting value for the Bailey iteration is

chosen in a subregion near the _TA value. Convergence to the proper eigenvalue is

then relatively certain. Mach number is then incremented with the previous Mach
number results used for the starting values. It. is reported that the result of this de-
velopment is a reliable computational scheme. A modal identification scheme based

on the Morse Charts has been used in reference 29 and further expanded upon in
reference 31.

A worker entering the field and needing to develop a stand-alone computational

scheme would probably wish to circumvent the detailed study of the topography of

the eigenvalue problem if possible. With this goal in mind, Eversman (refs. 32 and
aa) has developed an integration scheme to solve equation (58) for the circular-duct

case or equation (59) for the two-dimensional-duct case. An integration scheme was

used previously in connection with the no-flow ease (refs. 17 to 20) and it was found,
as demonstrated by equation (57), that the eigenvalue can be obtained as the solution

of a nonlinear initial-value problem.

The initial-value-problem approach can be extended to the case when flow is

present. The circular-duct case is discussed here. The eigenvalue problem

with

g Jm(g) irlA 1 - M-_/ = -irlaw 2 (60)
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kx 1

1 -M 2 [ i ] | (-M±vl/2)2 -1_M2 (61)

can be transformed into a differential equation by differentiation of equation (60) and

use of the Bessel equation to eliminate second derivatives of the Bessel functions. The
result is

d; F(_) + _F'(t¢) -4-2JAM (w/vl/2) (_/rl) dq

where

F(g)- J_(_)
Jm( )

and prime denotes differentiation with respect to the argument. In the derivation

of equation (62), the admittance A is taken as a function of the nondimensional

parameter _" (for 0 _ _ < 1). If A I is the admittance for which the eigenvalues are
required, a simple choice is

A = qA.f

and

dA

d-T = A.f

Equation (62) can be integrated from suitable initial conditions with A = 0 over

0 < q < 1 to yield an eigenvalue of equations (60) and (61) corresponding to each

starting value. It was previously shown (eq. (57)) that an initial-value problem not
involving the calculation of Bessel functions can be generated in the no-flow case.

This is appealing from an efficiency standpoint. It is also possible in the present case
but has not been used because of adverse effects on the accumulation of error in the

integration. This follows because when equation (62) is manipulated to eliminate the

Bessel functions, equation (60) is used. Because the integration process at each step

introduces slight errors, equation (60) is not actually satisfied exactly. This appears

to have the effect of making equation (62) very sensitive, to the point of requiring

extremely small integration steps.

The integration scheme employed is a fourth-order Runge-Kutta with variable

step size. The step size is adjusted by monitoring the residual generated in

equation (60) as the integration progresses. When an error bound is exceeded, the

integration is halted and a Newton-Raphson iteration is performed to reinitialize the

process. The step size is then reduced until the next integration step will lead to
an error within the error bound. This type of self-correction is the exception rather

than the rule, and a successful integration is often achieved with only 20 integration

steps for 0 < _ < 1.
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The choice of initial starting values for the integration process as the hard-wall

eigenvalues seems obvious. However, when Ira(A) > 0 two additional starting values

appear which lie at

n 1-M 2 1

r1 -- M 2 A (63)

in the limit A --* 0. These starting values do not need to be imposed in the limit

A --_ 0, and in a practical calculation a slightly sharper estimate for the starting

values is obtained which can be used to produce starting values of modest magnitude

(ref. 33).

If the eigenvalues are ordered on the basis of increasing attenuation, the extra

eigenvalues generally lie well down the list for parameters typical of turbofan engine

applications. However, for low frequencies these eigenvahms can surface near the top.
At least one of them has characteristics which have led some investigators to identify

it as an instability mode. In fact, the appearance of these modes is not completely
understood.

Finite-element, finite-difference, and weighted-residual methods also have appli-

cations in ducts with uniform flow, particularly in cases with cross sections which are

not circular or rectangular or which have peripherally varying liners. These methods

are also applicable when the flow is sheared and are discussed in the next section.

The problem of uniform flow in a circular duct using the method of weighted resid-
uals with trigonometric basis flmctions was specifically addressed in reference 23.

The major advantage of any of the methods of discretization of the problem is that

the resulting eigenvalue solution spans a complete finite subset of eigenvalues with

neither omission nor duplication, provided the discretization is carried out to a high

enough level of accuracy. On the disadvantage side, the accuracy of representation
of mode shapes and eigenvalues is not uniform and generally decays with increasing

modal complexity.

Sheared Mean Flow

When the mean flow is sheared, the eigenvalue problem is defined by equa-

tions (22) and (27) or equations (28) and (29). There does not appear to be any

general method of obtaining closed form solutions to these equations. Several early
investigators introduced approximate solutions. Pridmore-Brown (ref. 34) treated

the two-dimensional case with a linear velocity gradient and with a 1/7 power pro-

file by an approximate solution valid asymptotically under circumstances which in

practical cases require a high-frequency restriction. In reference 35 a power series

expansion was used, and in reference 36 a simple finite-difference discretization of the

governing equations was used. This approach was based on a previously successful

application of the finite-difference technique when flow is absent (ref. 37). These in-

vestigations were directed toward estimation of the attenuation in the fundamental
mode. In reference 38 an exact solution within a linear shear profile was used to

create an approximate effective impedance which could then have been used to treat

the problem as one of uniform flow.

In order to obtain solutions with any degree of generality it is necessary to use

methods of numerical solution of the governing differential equations and boundary

conditions. In this section four such methods of numerical analysis are discussed.
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These methods are all applicable to the simpler problems when the flow is uniform or
when the flow vanishes. In most cases, however, they are not as efficient as analytic

or semianalytic methods for the simpler problems, and their power is most flflly
realized in the sheared-flow case.

Reference 7 in the two-dimensional-duct case, reference 39 in the annular-duct

case, and reference 40 in the circular-duct case used numerical (i.e., Runge-Kutta)

integration of the governing equation. The integration is accomplished in terms of a

transfer matrix relating the pressure and the pressure gradient at one wall to those
at the other wall:

Pr i, }
2 [T21 1

If the boundary conditions at walls 1 and 2 are represented by

(64)

/D_ £1Pl

we can write

---- _2P2

P 1{<,}

[-e2, 1] p, 2

This leads to the eigenvalue equation

=0

E {'0j
For nontrivial solutions,

F (_ ) = T21+ elY22 -{2 (Yll q--t1T12) = 0 (65)

For sheared flow with no slip at the walls, Tu, T12, 7"21, and T22 are functions of

kx/_l. For the no-slip case, el and e2 are not fimctions of kz/rl. The eigenvalue
problem is to find values of kx/r I which satisfy equation (65).

Solutions to equation (65) are probably best obtained by a Newton-Raphson
iteration with finite-difference derivatives. Several strategies can be employed

to establish starting values. The most conservative approach begins with no-
flow eigenvalues and a systematic incrementing of the Maeh number. A second

approach begins with eigenvalues for uniform mean flow but proceeds at some

risk of nonconvergence in cases where the sheared flow substantially modifies the

propagation characteristics.

A slightly different approach has been used in reference 41. This reference treated

the case of rectangular-duct flow consisting of a central core of uniform flow and a
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boundary-layer region of thickness _. The solution for the central core can be written

in analytic form. Equation (28) for the boundary-layer region is approximated by

four finite-difference equations, and the interfaces at the duct-wall and boundary-

layer uniform flow produce two additional finite-difference equations. The set of six

homogeneous equations in terms of the unknown pressures at six finite-difference

points in the boundary layer constitutes an eigenvalue equation for values of kz/r I.
An advantage of this method is the elimination of the need to increase the number

of integration steps for very thin boundary layers. The same number of integration
pdints within the boundary layer is always used without complicating the solution

in the uniform-flow region. Reference 41 elaborates no further on the eigenvalue

solution technique, but presumably the strategy would be similar to that discussed

in connection with the Runge-Kutta integration procedure (refs. 39 and 40). For the

calculation of just a few eigenvalues these approaches can be reasonably efficient.

However, for the determination of a large number of eigenvalues, certain techniques
described in the following discussion may be less costly.

The method of weighted residuals (MWR) in the h)rm of a Galerkin method has

proven to be a powerful tool in extracting the eigenvalues for transmission through

sheared flows. The Galerkin method begins with the assumption that the solution

to the field equations (e.g., eq. (28)) can be approximated as a superposition of a

subset of a complete set of functions ¢i(Y) in the form

N

P(Y) = E qi¢i(Y) (66)
i=l

where the number of basis functions N is chosen to produce convergence of the result

based on the number of required accurate eigenvahms. In the standard application

of the Galerkin method the basis functions are chosen to satisfy the boundary

conditions. This poses no difficulty in the sheared-flow case with no slip at the
wall since solutions to the no-flow problem serve the purpose.

The coefficients qi in the superposition of equation (66) are determined in a way

which minimizes tile error of the trial solution. Equation (32) can be written in
linear operator form as

= 0
When the trial solution/) is substituted, a residual, or error, results:

£[151 = R

The residual must vanish if it is orthogonal to every member of a complete set of

functions. The set of test functions is chosen as the same subset of complete functions

used as basis functions. Thus, N relations of the type

fo 03.R dy = 0 (j = 1,2, ..., N) (67)

can be formed. This procedure leads to a set of N homogeneous algebraic equations

for the N coefficients qi. The coefficients in this equation depend on kz/_? and a

nontrivial solution exists for discrete values of kz/rl. The algebraic equations can be
cast as a linear eigenvalue problem:
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Aq = Aq (68)

where, depending on the structure of the particular problem, A is a matrix of

coefficients, q is a vector related to the unknown coefficients in equation (66), and ,_

is the eigenvalue related to kx/71. This type of eigenvalue problem is routinely solved
by standard algorithms.

Hersh and Catton (ref. 42) were the first to use this procedure in the case of
a hard-wall two-dimensional duct. They used the no-flow solutions ill the form of

trigonometric functions. They refined the estimates thus obtained by using them as

initial values in the Runge-Kutta method previously described (refs. 39 and 40).

Savkar (ref. 43) approached the same problem using polynomial basis functions

which were constructed to satisfy the boundary conditions for either a hard-wall

two-dimensional duct or a two-dimensional duct with acoustically absorbing walls.

Ill references 44 and 45 the Galerkin method was used to study the attenuation

in sheared flow in two-dimensional and three-dimensional rectangular ducts. This
appears to be the first time this problem was cast as a linear algebraic eigenvalue

problem and a large-scale eigenvalue solution routine was used. As a consequence

of this approach eigenvalues were calculated which are clearly acoustic as well as

eigenvalues which appear to be nearly hydrodynamic in nature. The Galerkin method
was also used in references 46 and 23 in the uniform-flow case. This is a more

difficult situation because the boundary condition at the wall involves the eigenvalue
kz/7?. Rather than use basis functions which satisfy the boundary conditions, a

boundary residual is introduced in addition to the field-equation residual. The

modified Galerkin method is then used to obtain coefficients in equation (67) which

minimize the field-equation residual and the boundary residual. A feature of this

work is tim use of the acoustic field equations in the form of the primitive variables p

and V. This constitutes an application of the Galerkin method to a set of equations.

The choice of basis functions is suggested by results in the no-flow case.

Yurkovich (ref. 47) demonstrated the power of the Galerkin method in his

investigation of the acoustic transmission in circular and annular ducts carrying
sheared and swirling flows.

The Galerkin method is but one of several methods by which the field equations

and boundary conditions are replaced by discrete relations in the form of algebraic
equations. Perhaps the most obvious way of doing this is by replacement of

the differential equations with their finite-difference approximations. This was

first proposed in reference 48. The appealing characteristic of this approach is

the tridiagonal form of the difference equations. However, the structuring of the

difference equations as a standard linear algebraic eigenvalue problem is hindered

by the presence of the eigenvalue kx/r l in equation (22) or (28) in the coefficients
of both P and pi. As shown in references 44 and 45, it is possible to replace the

problem, which turns out to be cubic in kx/rl, with one which is linear in kx/rl but
tripled in order. However, this would not preserve the tridiagonal character of the

problem. In reference 48 an iterative scheme was devised to cope with this and to

maintain a tridiagonal difference representation.

Dean (ref. 49) has also used a finite-difference scheme. He was primarily concerned

with obtaining a simple eigenvalue procedure which takes advantage of the basically

tridiagonal nature of the difference equations. Toward this end he replaced the
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actual shear profile with a velocity discontinuity (similar to the boundary-layer

displacement thickness concept). He was then able to put the entire effect of the

boundary layer into the boundary condition and thus only slightly disrupt the very
simple linear algebraic eigenvalue proiflem which would exist for completely uniform

flow with a zero wall velocity. He used an iterative technique based on the nearly

tridiagonal nature of the problem to calculate eigenvalues. The advantage of this

over a standard algebraic eigenvalue routine is the ability to focus on specific modes

without calculating the entire eigenvalue set. The disadvantage is the necessity of
having good starting values and the resulting implication of convergence problems,
which are analogous to diflicuities found with other methods.

The most flexible of the methods of discretization of the field equations is the

finite-element method (FEM). The major strength of FEM lies in the systematic

treatment of problems with irregular boundaries and solution grids. The application

of FEM to eigenvalue problems in ducts is relatively straightforward for circular and

rectangular ducts because they are one dimensional (i.e.. the transverse coordinate).
No considerations of element geometry arise and one is concerned mainly with the
question of choosing element shape functions which produce a good balance between

eigenvalue solution accuracy and computational efficiency.

In general, in acoustic problems for ducts with attenuating walls and sheared
mean flow, variational principles are not available. The finite-element formulation in

duct acoustics is thus carried out with a Galerkin method and except for the choice
of the basis flmctions and test flmctions is identical to the classic Galerkin method.

In tile finite-element method the domain is divided into subdomains (or elements)
in which suitable basis functions (or shape functions) are defined. A distinguishing

feature of the finite-element method is that the shape functions interpolate the
acoustic field within the element on the basis of the value of the acoustic field at

discrete points (or nodes) within and on the boundary of the element. A second

distinguishing feature is the fact that what is a global basis function in the classic

Galerkin method is replaced in the finite-element method by a patchwork of local

basis functions (shape functions) explicitly defined within each element. Continuity
on interelement boundaries leads to a rationale for assembling the element "stiffness"

matrices into a global stiffness matrix. The term stiffness matrix is used only by
analogy with tile more common applications of finite-element methods to structural

analysis.

Finite-element analysis has become a field of applied mathematics in its own right.
It is not appropriate, and in fact it is probably impossible within the constraints of

space herein, to give the details of the applications in duct acoustics. Hence, we only
refer to certain specific examples of application.

In the eigenvalue problem the application of the finite-element method is particu-

larly simple since the field equation is an ordinary differential equation (e.g., eq. (28))

or perhaps the equivalent set of ordinary differential equations (derived from eqs. (18)
and (19)). The main question to be answered is the achievable accuracy with various

choices of element types. The element type relates to the geometrical shape of the

element and the type of shape functions. In an ordinary differential equation the

geometrical shape of the element is a straight line, so only the type of shape flmction
is to be determined for the particular application.

Application of the finite-element method again leads to the linear algebraic
eigenvalue problem (eq. (68)) for the axial wave numbers.
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Aq = Aq

where A is related to kx/_l. In this case the generalized coordinates in q are the
values of the acoustic field at the finite-element nodes. Hence, the eigenvectors are

the discrete analogs of continuous eigenfunctions which might arise from a solution
of the boundary value problem of equations (22) and (27).

In the context of the eigenvalue problem for the uniform-flow duct with a general

mean flow_ the FEM has been investigated extensively in references 50 to 52. In

the original formulation (refs. 50 and 51), elements with quadratic shape functions
were used. These elements require a grid where nodal values of the acoustic state

variables are specified. In certain instances the solution set of eigenvalues degenerates

in accuracy rapidly as the modal order increases. Spurious eigenvalues occur with

corresponding eigenvectors characterized by large slope discontinuities at element

boundaries. The degeneration in accuracy is lessened by refining the mesh and

thereby increasing the dimensionality of the problem.

A considerable improvement was achieved by the introduction of Hermitian

elements (ref. 51). These elements, referred to loosely as "beam bending elements,"
have cubic shape functions based on specification of the acoustic states and their

derivatives at the nodes (bending deflection and bending slope in the analogous

structural element). Use of Hermitian elements eliminates spurious modes and

improves the accuracy for a given dimensionality.
A second concept introduced in the improved version (ref. 51) is the equivalent

of an eigenfunction expansion in vibration analysis. The eigenvalue problem for the
case of mean flow is expanded in terms of a subset of the eigenvectors obtained when

flow is absent. When flow is absent the eigenvalue problem is significantly reduced

in dimensionality. The net effect of solving first the no-flow eigenvalue problem and

then the flow eigenvalue problem with a reduced set of basis functions is to offer a

considerable computational savings with minimal reduction of accuracy.
The FEM is not limited to simple geometries and can accommodate an arbitrary

lining configuration, although at considerable cost in dimensionality. Reference 53
demonstrated the use of the FEM for the calculation of the eigenvalues for circular

and rectangular ducts with a peripherally varying liner.

In many cases the boundary layer is thin in comparison with the duct transverse
dimension. In this case a considerable simplification in the computation of the duct

eigenvalues, and therefore the attenuation, can be achieved. References 54 to 56 used

an asymptotic expansion within the boundary layer based on the small parameter

f/L, where 5 is the boundary-layer thickness and L is the characteristic transverse

dimension. This procedure produces an equivalent boundary condition to be enforced

at the edge of the boundary layer. At the outer wall of a circular duct the boundary
condition is

where

(

Mo

1 . (..)
d--7= 1+ i ,A (1 - MoKO)2

=
core flow Mach number
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A wall dimensionless admittance

c_ = _2 _ i_?A

3 = m 2 + _2k2

K = kx/r!

The velocity profile in the boundary layer is given by

M(_) = Mo¢(_) (0 _< _ < 1)

where _ = 1 corresponds to the outer edge of the boundary layer. An interesting
and important implication of equation (69) is the limiting case e ---, 0, for which the

boundary condition becomes identical to equation (26), thus verifying the correctness
of the continuity of particle displacement assumption used in its derivation.

The boundary condition of equation (69) should be applied at the edge of the
boundary layer. Since the boundary layer is assumed to be thin relative to the duet

radius, it is generally adequate to apply the boundary condition at the duct wall,
in which case it can legitimately be viewed as an effective admittance. Wherever

applied, the effective admittance is a function of the axial wave number kz, whereas

in the usual point reacting liner boundary condition (eq. (26)) the admittance is

independent of kx (though generally dependent on r], the dimensionless frequency).
In fact, the effective admittance is that of a bulk reacting boundary, that is, one that
admits wave propagation.

The computation of eigenvalues can still proceed from equations (58) and (59),

but the integration scheme of equations (60) to (62) is no longer directly applied.
The integration scheme can be used in combination with relaxation if the eigenvalue

problem is first solved with _ = 0 (the uniform-flow case). The values of K = kx/rl
so obtained can be used to evaluate the effective admittance

+
Aeff = (70)

1 + ie_A fl (1 - MoK¢) 2 d_

which can then be used in the integration scheme to find new values of K. This

sequence proceeds to convergence of the K values. Should convergence difficulties

arise, increments of _ can be used, but for a small _ this should not be necessary.

The effective admittance can be computed explicitly for linear, sinusoidal, and

1/N power law boundary layers. For other boundary layers the integrals may have
to be computed t)y numerical quadrature.

Myers and Chuang (ref. 57) have improved upon the inner expansion by obtaining

a uniformly valid matched asymptotic expansion which maintains accuracy for
thicker boundary layers. The resulting eigenvalue problem is modified, but a similar
procedure would be used to obtain eigenvalues and eigenfimctions.

General Computational Results

Design criteria for acoustic liners in turbofan inlet and exhaust ducts are consid-

ered in detail in another chapter. In this section we refer to some general results
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which can be deduced. All results quoted are for tuned linings consisting of a re-

sistive face sheet and a cavity backing. Details of lining characteristics are given in

another chapter.

Rice (ref. 58) has shown that the presence of a uniform mean flow has a substantial

effect on the acoustic lining impedance required to obtain maximum attenuation.

For an initially planar acoustic wave introduced in a circular lined duct. (constructed

from the superposition of 10 nonplanar soft-wall symmetric acoustic modes), he
determined the curves of equal sound power attenuation in the impedance plane, both

with no flow and with an inlet flow of M = -0.4 (negative Math nmnber indicates

propagation opposite to flow direction), at a nondimensional frequency r/ = ft. The

attenuation was computed over an axial length of 6 duct radii. The result in the
impedance plane is shown ill figure 3, in which it is shown that the presence of flow

has a strong effect on the values of impedance which correspond to a given level

of attenuation, and in particular on the impedance required to achieve optimum
attenuation. He also shows that the maximum achievable level of attenuation is

relatively insensitive to the mean flow. This is shown in figure 4 wherein attenuation

per distance equal to duct diameter is plotted against the nondimensional frequency

r/. There is a substantial decrease in achievable attenuation with frequency, but very
little dependence on Mach number. This result cannot necessarily be extended to
other combinations of modes.

A study (ref. 26) for the two-dimensional case considered only the fundamental
mode and examined the variation of the frequency at which peak attenuation occurs

as a flmction of Math nmnber for specific linings. Plotted in figure 5 is the ratio of

the tuning frequency fp (frequency of peak attenuation in the flmdamental mode) to

the tuning frequency at zero Math number (fP)M=O as a function of Mach number.

It is shown that the tuning frequency decreases in inlet flow and increases in exhaust

flow. The result is relatively insensitive to the resistance of the lining.

It is found in reference 59 that modes of high spinning and radial orders (modes
which are not axisymmetric) attenuate more rapidly than those of lower orders. It

is concluded that some knowledge of the source is required to carry out a reasonable

lining design.

The effect of the boundary layer is important in the determination of the optimum

impedance. Simple considerations of ray acoustics show that for an inlet flow

where the sound propagation is opposite to the mean flow, the boundary layer

tends to refract acoustic rays away from the duct wall, and it. might be expected

that for a given lining the attenuation would be less than that calculated using
a uniform mean flow. The opposite effect should occur in exhaust flows. This

is supported by experiment, although a greater effect is seen in inlet flows than

exhaust flows. A parametric study (ref. 60) showed that for inlet flows the optimum

acoustic resistance for individual well-cut-on modes is reduced substantially with

increasing boundary-layer thickness, while the boundary-layer effect on reactance

is much smaller. The most. significant fact found is shown in figure 6. Here the

ratio of optimum attenuation with boundary layer a to optimum attenuation with
no boundary layer er0 is plotted against the ratio of the boundary-layer thickness 6

to the wavelength k for a given angular mode m and frequency r/. For boundary
layers up to 25 percent of the wavelength, the achievable attenuation is not. very

sensitive to the boundary-layer thickness. Hence, with proper design procedures the

presence of a boundary layer need not reduce the achievable attenuation for well-cut-
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on modes. This fact can be understood in the context of effective admittance. (See

eq. (70).) As long as the effective admittance takes the optimal value, the attenuation

is independent of boundary-layer thickness (within the limitations of the equation).

Reference 61 showed that. a precise model of the boundary layer is not required to
carry out practical design calculations. It showed that a boundary-layer profile which

matches the shape factor (ratio of displacement thickness to momentum thickness)

and the displacement thickness of the actual boundary layer produce attenuation

rates essentially the same as the actual boundary layer. In particular, the 1/7 power

law boundary layer can be replaced by a linear profile with slip at the wall. This

observation minimizes the eomput.ational difficulties associated with sheared-flow
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calculations. Other investigations showed that a thinner boundary layer with a

linear profile but without slip can also be used to simulate the actual engine duct

profiles, which are seldom of 1/7 power. If the boundary layer is not thin, care should

bc taken to use the actual profile.

An Alternative Calculation Scheme

Based on Correlation Equations

The computation schemes introduced previously call be coupled with a suitable

optimization algorithm to create a suppressor design procedure. A design iteration

based on these schemes would be complicated and time-consuming and in addition

may require information not available to the designer (e.g., the duct modes present).

An additional complication is the large number of paranleters involved, since the

optimum impedance is a function of frequency, Mach number, boundary-layer

thickness, and duct modes present. Furthermore, even after all optimum design is

achieved (one which produces the maximum attenuation), it is necessary to consider
off-design performance, which requires more analysis. In an effort to streamline

this procedure, Rice (refs. 3, 59, 60, and 62 to 65) has made major contributions

to the design process by identifying correlating equations from which approximate

computations of suppressor performance can be made. He has found an analytic

approximation for the contours of equal attenuation in the impedance plane (see

fig. 3, e.g.) (refs. 62 and 63), which is a function of the optimum impedance and the

optimum attenuation rate for a given mode, mean flow Mach number, boundary-

layer thickness, duct geometry, and frequency. This approximation allows the rapid
estimation of off-design liner performance, that is, the equal attenuation contours

for linings which are not optimum.

A second inajor contribution to the design procedure introduced by Rice is his

discovery that the optinmnl impedance (resistance and reactance) and the maximum
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possible attenuation for a given frequency, boundary-layer thickness, and geometry

are uniquely defined by the modal cutoff ratio (refs. 3 and 64). In this context,
the definition of modal cutoff ratio is extended to ducts with acoustic treatment by

introducing tile definition

= -- r/ (71)

R_/(1- M 2) cos 2¢

where the axial wave number is given by

_X

r] 1 - M 2

-M + V/1 - (1 - M2)(g/r]) 2

and

= R exp(i¢)

Figure 7 shows the loci of optimum impedances for a given frequency, Mach

number, and boundary-layer thickness. Numerical computations were carried out

by Rice (ref. 3) to find the optimum impedance for a large number of modes with

different spinning (angular) and radial mode numbers. The data symbols correspond

to the angular mode m, and the location of the symbol around the curve clockwise
corresponds to increasing radial mode number _. Modal cutoff ratio decreases in

the clockwise direction. Where two symbols are nearly coincident the modal cutoff

ratios are nearly the same, as indicated by the identification of two symbols with

cutoff ratios near _ = 1.2.
Based on this observation reference 64 established a correlating equation for

optimmn impedance as a function of cutoff ratio for a given Mach number, boundary-
layer thickness, and frequency. The success of the correlating equations is shown in

figures 8 and 9 for a specific case. Optimum resistance and reactance are shown
as a flmction of cutoff ratio with boundary-layer thickness as a parameter for a

specific frequency and Mach number. The data symbols are the result of numerical

computations and the curves are the result of the correlating equations.

Hence, algebraic equations, which result from extensive numerical analysis,

insight into the theoretical results, and some empiricism, are available for the design

process. Rice and Sawdy (ref. 66) have summarized the design procedure and an
extension which also makes use of a correlation of the far-field directivity to cutoff

ratio.

The results are based on analysis of ducts of infinite length; that is, there are
no reflections from the duct termination. The results may be substantially modified

for short ducts typical of fan engine inlets. The cutoff ratio remains a viable design

parameter, but the duct LID becomes an important additional parameter.

Acoustic Energy

One convenient measure of the effectiveness of acoustic treatment in a duct is

the acoustic energy which is absorbed or reflected by the treatment. In principle

this measure can be applied by computing the acoustic power or the acoustic energy

flux (acoustic power per unit area) at two duct cross sections a distance Ax apart
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and by then attributing the decrease in the flux to the attenuation introduced by

the lining. The flux of acoustic energy can also in principle be broken down into

incident, reflected, and transmitted contributions. Calculation of these components

(:an be used to quantify the effectiveness of reactive acoustic treatment in terms of

reflection and transmission coefficients.

In thermo-fluid mechanics, energy density and flux are defined in terms of

products of the fluid state variables. In the acoustic case definitions of acoustic

energy density and flux are to be expressed in terms of only steady-state and first-

order-fluctuating acoustic perturbations. For general flows this is an elusive goal,

at least in the sense of producing definitions which are appropriate for practical

calculations. Morley (ref. 67) has addressed the question of general flows, as has

M6hring (refs. 68 and 69). Morfey also discussed one of two definitions of acoustic

energy density and flux, which are useful for calculations in a restricted class of

flows. He restricted attemion to irrotational uniform entropy flow. For this case the

consideration of the time-averaged flux of stagnation enthalpy across a fixed surface

yMds the definitions

1 p2 + _pV 2 + 1El = 2pc2 _(Vo" V)p
(72)

l__Vop 1

N I = pV + p(Vo" V)V + Pc 2 + c-_Vo(Vo'. V)p
(73)
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where E! is the acoustic energy density, N I is the acoustic energy flux, p is the local

mean flow density, c is the local mean flow speed of sound, and Vo is the mean flow

velocity. These definitions are given in dimensional form, as is almost universally

the case in the literature. The equivalent nondimensional forms are easily obtained

by scaling the energy density by a suitable reference value prc 2 and the flux by prC 3.

It is important to note that the definitions are entirely in terms of the steady-flow
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state variables and second-order terms involving the first-order acoustic fluctuations
p and V.

A second approach, typified by the work in reference 70, starts directly with the

thermo-fluid mechanics energy equation, expands in a perturbation series, subtracts

out the steady-flow contributions, retains only second-order quantities in the acoustic

fluctuations, and defines the resulting quantities as acoustic energy density and flux.

If the mean flow is entirely uniform, this procedure yields the definitions

1 2 1 2
Eli = 2- p + (74)

NII = pV + Vo ( 2-_ p2 + _pV2 ) (75)

These are again in terms of second-order terms involving the first-order acoustic
fluctuations.
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The acoustic intensity in either case is defined as tile time-averaged acoustic
energy flux

I = {N)

The total acoustic power at a duct cross section is

where S is the surface area over which the integral is carried out. If there are

no energy sources or sinks the acoustic power is conserved between two duct cross

sections Ax apart. This result is true for both definitions of acoustic energy flux.

Candel (ref. 71) has reviewed much of the literature dealing with acoustic energy
principles in general and their application to ducts in particular. The classification
given herein is consistent with his observations. Both forms are valid sets of

definitions, but the type I energy definitions satisfy a conservation law for a wider
class of flows.

Eversman (ref. 72) shows that the two forms of energy density are compatible

with variational principles, from which tile acoustic field equations can be derived in

the case of uniform flow when both definitions satisfy a conservation law. The term

E I is the Hamiltonian density and Eli is the Lagrangian density. In general, E I _: EII
and N I _ Nil. However, this is not significant; as energy-related quantities, suitable

additive constants can be introduced to force equivalence. The important fact is

that the change in acoustic power between two duct cross sections Ax at)art is zero
when no energy sources or sinks are present.

When energy sources or sinks are present, a modified form of the definition of
acoustic power must be used to account for them. This has been done for a lined

uniform duct with uniform flow (ref. 72). The appropriate definitions are

f f (NI)" ndS+V((Pbf}+pY(ubf))Pi
J Jb'

sis slPII = (NII). ndS+V pb_ x dx

The surface integral terms are recognized as the power definitions for the hard-wall

duct. The terms Pb and ub are the values of the acoustic pressure and the axial

component of the acoustic particle velocity at the duct wall. The term _'(x, t) is the
wall displacement field. It is found that

dPn
- -

dx dx

where r b is the resistive component in the lining impedance,

P
Z - - rb + ix b

qt

and Ct is the normal component of velocity at the wall. Hence, the rate of decrease

of acoustic power is the same for either definition.
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Nonuniform Ducts

Tlle duct system through which fan noise propagates and radiates is contoured

for aerodynamic and propulsive efficiency. In the acoustic design sequence it may be

necessary to determine the effect of the duct nonuniformity on the lining performance.

Modeling of acoustic propagation in the fan inlet and exhaust ducts involves

consideration of the geometric nonuniformity of the duct as well as the resultant

nommiformity in the mean flow. The problem thus becomes one of considerable

complexity for which no "exact" analytical solution is generally available, as in the

case of many comparable problems in uniform ducts.

As noted previously, tile propagation and radiation problems are coupled and
should be solved simultaneously. This is the ultimate goal of the modeling process.

However, most analysis methods have approached the propagation and radiation

problems separately by treating the propagation as occurring in a duct with no
reflection at the termination and the radiation then proceeding from the conditions

established in this manner at the termination. Even this simplification leaves the

difficult problem of describing the mean flow in the duct and the acoustic propagation

in the presence of this flow.
In this section we look at methods which have been used to consider the acoustic

propagation in nonuniform ducts with reflection-free terminations. This challenging

problem was first attacked for the case when the mean flow vanishes or can be
assumed to be of negligible effect. Subsequent extensions were made to include the

effect of mean flow. The discussion herein is split up in the same way and a number

of techniques are reviewed.

The question of radiation to the far field is addressed in the final section of this
chapter, wherein modeling methods are introduced with which the entire propagation

and radiation process can be described. This section and the final one are thus closely
related.

Nonuniform Ducts Without Mean Flow

Methods of modeling linear acoustic propagation in nonuniform ducts without

flow can be broken down into five major categories: (1) one-dimensional or plane-

wave approximations; (2) approximations for higher order acoustic modes which

neglect, modal coupling; (3) stepped duct approximations; (4) variational and

Galerkin methods; and (5) finite-element and finite-difference methods. The last

category of methods has been successfully extended to include the radiation to the
far field.

At low frequencies the Webster horn equation (ref. 73) can be obtained either

by directly considering one-dimensional forms of the continuity and momentum
equations or by expanding the acoustic equations in terms of powers of a small

parameter which is the ratio of the duct radius to the wavelength. The first-order

terms are the Webster equation. The resulting theory is equivalent to the "plane-

wave theory" in uniform ducts. For most problems in turbofan duct acoustics the

theory is not adequate for the representation of high-frequency propagation from

rotating-blade noise sources. However, the solution of Webster's equation has been
used in a modern context in reference 74 in connection with studies of the acoustic

properties of the contoured circular duct present in a bottle neck.
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When tile cross-sectional area of the duct or the acoustic lining properties vary

slowly, perturbation techniques become useflll. The method of multiple scales was
used in reference 75 in connection with the acoustic wave equation in tile case

without mean flow to represent the propagation of a single mode. To this level of

approximation no interaction can occur between the various acoustic modes which

occur in the duct. A second approach, which arrives at essentially the same result
in the case of the duct with no acoustic lining, comes from reference 76. It used a

Galerkin method but neglected the modal interaction in an application of the WKB

at)proximation for the resulting mlcoupled set of ordinary differential equations with

slowly varying coefficients. The result is a solution for tile axial variation of amplitude
of the acoustic modes in the duct, but without the effect of modal interaction.

A reasonable approach to the inodeling of a nonuniform duct which includes
tile effects of modal interactions is the segmentation of the duct into a sequence of

uniform ducts with step changes in duct cross-sectional area or lining iinpedance

at the interfaces. It is assumed that in each segment the pressure field can be

at)proximated by a finite (and hopeflflly small) number of the acoustic modes for
the section, each with undetermined amplitude. Conditions of continuity of mass

and axial momentum at tile interfaces are enforced in that a sequence of residuals,

weighted by the acoustic modes themselves, are required to be orthogonal on the cross
sections of the discontinuities. For given input modal amplitudes and an assumed

reflection-free termination, it is possible to set up a set of linear equations for the

modal anq)litudes in each segment. Acoustic pressures at any point in the duct can

then be recovered by suitable postprocessing of the modal amplitudes and associated
acoustic modes. In reference 77 this method was introduced for the mfiform duct

with an axially varying lining, and it was used in reference 78 for the case of a duct

with axially varying cross-sectional area. It is appropriate to point out here that the

segmentation apt)roach has also been employed in the case of ducts with mean flow.

Axially segmented linings in a uniform duct with uniform flow were considered in
reference 79 and extended to shear flows in reference 80.

The first use of a Galerkin method (or, more generally, the method of weighted

residuals (MWR)) in the duct acoustic propagation problem was apparently in
reference 76 as previously noted. This investigation of hard-wall ducts was based

oil a velocity potential. Tile formulation admitted the effect of modal coupling, but

this was subsequently neglected at the solution stage. We are interested in the more

general case when modal coupling effects are retained and a locally reacting duct

liner is present.

The application of the Galerkin method to propagation in nonuniform ducts is

similar to the application to the eigenvalue problem described by equations (66)

to (68). Figure l0 shows the general geometry of the nonuniform duct between
senti-infinite uniform ducts. In the nonuniform section 0 < x _< L, the impedance

ZB(X ) and the area SB(z ) can vary. This figure can be considered either as a two-
dimensional or circular duct (0 = Constant plane in a cylindrical coordinate system).

Tile acoustic field is described by field equations, represented here by a linear

vector oi)erator/_F, acting on the acoustic state variables, which may include pressure

p and particle velocity V:

/_F[V, P] = 0 (76)
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The term _F is written as a vector operator because it may represent several

field equations. For example, equation (76) could be the acoustic continuity and

momentum equations (eqs. (18) and (19) with M = 0) in the case of harmonic
motion.

inp + V. V = 0 (77)

i,Tv = -Vp = 0 (78)

or it could be tile Hehnholtz equation in pressure only:

V2p + ri2p = 0 (79)

Solutions are sought in the form of a superposition of the transverse acoustic modes

for a duct which is locally Ulfiform:

{P} = [el{q}

where {P} is the vector of field variables (for example; three components of particle

velocity and pressure), [¢] is a suitable modal matrix derived fi)r a locally uniform

duct, and {q} is the vector of modal amplitudes (generalized coordinates).
The uniform-duct acoustic modes do not satisfy the boundary conditions for the

nonuniform duct, and these conditions must be included as part of the problem

statement. On the duct wall,

V'v= Ap

This can be cast as the following boundary operator:

lz.[v,p] = o (80)

The assumed solution {P} is substituted in both tile field equation operator and the
boundary operator and produces errors, or residuals, as follows:
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On the boundary,

RF = _F[{P}] = £F [[*]{q}] (81)

r 1

R. = C.[{PI] = C.[[,]{q}] (82)

For the Galerkin method (ref. 81), the residuals are required to be orthogonal

to each member of a complete set, in this case the acoustic modes (basis flmctions)
themselves, thus establishing a set of ordinary differential equations for the elements

of lhe modal amplitude vector {q(x)} which by implication tend to produce zero
residual error. The statement of orthogonality is

On tile boundary,

ff d =o (83)

[¢1T _B[[*]{q}] =0 (84)

In carrying out the integration equation (83), it is found that boundary terms arise
which can be eliminated with the boundary residual. This is the equivalent of natural

boundary conditions in variational methods.

The set of differential equations arising from the Galerkin procedure is of the
form

{dq}_xx ----[B]{q} (85)

A transfer matrix relating {q(0)} and {q(L)}, the values of the amplitudes at x = 0

and x = L, is readily obtained by a numerical integration scheme (e.g., the Runge-

Kutta scheme):

{q(L)} = [Tl{q(O)}

The terms {q(L)} and {q(O)} can then be expressed in terms of incident and reflccted

acoustic modal amplitudes in the uniform sections (lined or unlined):

{a+}{q(0)} = [A(0)] a-

{q(L)} = [A(L)] b-

where [A(0)] and [A(L)] are suitable matrices for the known modal structure of
incident and reflected waves at x = 0 and x = L. It is then possible to establish a
transfer matrix in the form

b a +
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This can be decoinposed under the assumption that the incident modal amplitu(tes

{a + } are known and that the duct termination is reflection free ({b-} = 0) to define
reflection and transmission coefficients. The reflection and transmission coefficients

can be used in a postt)rocessing operation to construct the acoustic field in the
nonuniform section.

The MWR was used in reference 82 for two-dimensional ducts. Reference 83 used

what is essentially a MWR in c,onnection with a "wave-etlvelope" representation of

tile acoustic state variables (in this case pressure only) to treat the same problem.

The wave-envelope approach isolates tile rapidly varying wave structure of the

acoustic propagation from relatively slowly varying changes in the modal amplitudes

in order to create a set of ordinary differential equations analogous to equations (83)

and (84) but which represent the relatively slow amplitude variations. Advantages

can t)e exl)ected in the resolution required in the integra)ioll scheme.
Tile finite-element method offers a much more flexil)le scheme than the MWR

for modeling the acoustic transmission properties of nommiform-duct segments.

As noted previously, in applications in acoustics it is generally most appropriate

to base a finite-element apt)roximation on the GalerkiH method. When this is

accomplished, equation (85), which is a set of ordinary differential equations for
the modal amt)litudes, is reI)laced by a set of algebraic equations for tile acoustic

state variables at tile finite-element nodes. In a mamwr completely analogous to

the one used in the classic (;alerkin scheme, the finite-element representation in the

nonuniform section can be matched to a modal representation in the senti-infinite

entrance and exit ducts. The result of these operations is a large set of algel)raic

equations of the t'orm

where the elements of the vector {P} are the acoustic slate variables at the finite-

element nodes in the nommiform section. The term {a } is a vector of reflected

modal amt)litudes in the inlet semi-infinite duct, {b + } is a vector of transmitted

modal amplitudes in the exit semi-infinite duct, {a + } is a vector of specified incident

modal amplitudes in tile inlet semi-infinite duct, [K] is the assembled "stiffness"

matrix: and [F]{a + } is the generalized "force" vector. An appropriate solution of

equation (86) yields the reflection and transmission matrices

{a- } = [R]{a + }

{b +} = [T]{a +}

With modern finite-element schemes the large set of equations does not actually

need to be stored in active computer memory. "Frontal nwthods" (ref. 84) provide

a systematic scheme i, which the finite-element assembly process and the equation

solving are integrated into an algorithm which requires only a modest active memory,

almost independent of the t)roblem size. There is a vast amount of literature on finite-

element methods in general, and two particularly well-known works are references 85
and 86.
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The use of the finite-elenmnt method in tile absence of mean flow is discussed in

references 87 to 91 in connection with the modeling of mufflers, a physical arrange-

ment not significantly different from the fail inlet problems of interest here. Craggs'

work (refs. 9(} and 91) was somewhat unique in that he was interested in modeling

truly three-dimensional geometries (as opt)osed to tile more widely discussed two-

dimensional or axisymmetric problems), and therefore he discusses three-dimensional

elements. Tag and Akin (ref. 92) made calculations for a two-dimensional non-
uniform duct. All these investigations were based on a variational formulation, re-

quiring some manipulations which arc not required when a Ga]crkin method is use(t.
The chief difference in the approaches is in the specific elements used.

Reference 93 t)resents a colnparison of the use of the method of weighted residuals
and tile (]alerkin finite-element method for the calculation of the translnission and

reflection properties of acoustically treated nommiform ducts. Tile finite-element

metilod produces virtually exactly tile same results for reflection and translnission
coefficients as does the standard Galerkin niethod. The computational cost of the

finite-element method when based on tile Helmholtz equation is about the same as the

corot)arable Galerkin solution. The formulation in reference 93 is the only one which

employs tile ,natcifing of the finite-eleinent solution in the nonuniformity to a Ino(ial
sohltion in the inlet and exhaust semi-infinite ducts. This, or an equivalent approach,

is essential to adequately account for inlet and exhaust boundary conditions in tile
finite-element solution.

Finite-difference methods have also been extensively studied for ai)plication to

the duct acoustics problem. Time-dependent (transient) and harmonic steady-state
forimflations have been used, and lint)licit and explicit schemes have been tested.

While good results in relatively silnt)le test cases have been reported, the finite-
difference method has not become a generally used computat tonal scheme. The main

reason is the t)enalty imposed on finite-difference schemes t)y irregular geometries.
Finite-element schemes arc particularly well suited for duct problems, especially
when nonuniform ducts are considered and when the question of imposing meaningful

forcing and termination conditions is raised. It might also t)e added here that tile
finite-element schenm is more suitable for modeling the radiation to free space when

this type of t)oundary condition is appropriate. A complete review of finite-difference

applications in duct acoustics has been Inade by Baumeister (ref. 94), who has also
made a number of contributions in this area. Consult this review for further details.

A comt)arison of experiment to theory for a simple nonuniforIn-duct geometry

was reported in reference 95. Both the finite-element theory of reference 93 and the
finite-difference calculations of White (ref. 96) were found to he in good agreement

with tile experiments.

Nonuniform Ducts With Mean Flow

Two types of nommiforln ducts are considered. The simplest situation is that of
a duct of uniform cross section but with axially varying lining impedance. In this

case the inean flow is axially uniform. This problem has been of considerable interest

in connection with the design of linings wtfich are segmented axially with the two

objectives of providing attenuation over a broad range of frequencies and of inducing
attenuation because of tile reactive effects of lining discontimlities. As previously

noted tile stepped duct approximation (also referred to as nlode nlatching) is suitable
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for modeling transmission in a duct with segmented linings, even in the presence of
sheared mean flow. Reference 79 for ducts with uniform flow and reference 80 for

sheared mean flow have used the mode matching technique.

When a duct area nonuniformity is present, we are concerned not only with the
effect of the area nonunih)rmity on the propagation, but also with the effect of the

axial and transverse flow gradients induced by the area nonuniformity. A limiting
case would be the situation in which the area nommiformity creates a sonic flow at the

throat, completely cutting off upstream transmission. Experimental investigations of

this attenuation mechanism in references 97 to 99 have shown that locally sonic flow
conditions in an inlet can create a substantial reduction in the forward transmission

of fan-generated noise, although the noise cannot be completely suppressed. Perhaps
of even more interest is the observation that the mechanism appears to be at least

partially effective for throat Mach numbers below sonic, perhaps as low as 0.8. An

effort to determine whether linear acoustic analysis could predict this flow-induced

attenuation led to a substantial effort to model propagation through high subsonic
flOWS.

A complicated situation occurs when the duct is nonuniform in cross section. We

also include the possibility that the lining is axially nonuniform. It is necessary not
only to model propagation in the nonuniform geometry, but also to consider the

effect of propagation through the nonuniform flow field. In general, the mean flow

is computed separately and is given as data for the acoustic analysis. The model

used for the mean flow has substantial influence on the complexity of the acoustic
model. If no restriction is placed on the mean flow and it is allowed to be rotational

(principally due to the duct-wall boundary layers), then an appropriate form for the

acoustic field equations is the acoustic momentum equation and the acoustic energy
equation (eqs. (6) and (7)). An alternative is the acoustic field equations derived

directly from the continuity and momentum equations (1) and (2). This type of
mean flow representation has to be obtained from the Euler equations or the Navier-

Stokes equations. If the mean flow is irrotational, then the acoustic field equations
can be obtained in the form of equations (9) and (11). This means that the mean

flow must be nonviscous and that no boundary layer can be included.

The computational implications of the two representations are substantial. If

the mean flow is assumed to be general, then it is necessary to work in terms of

the primitive variables pressure (or density) and velocity, with four field equations

for three-dimensional acoustic fields. If the mean flow is assumed to be irrotational,

then the acoustic field is also irrotational and the introduction of an acoustic velocity

potential leads to only one field equation for the potential. The acoustic pressure
and particle velocities are obtained by postprocessing the velocity potential solution.

When there is mean flow present, the boundary condition at duct hard walls is

still the requirement that the normal component of acoustic particle velocity must
vanish:

V'v=O

When a mean flow is present in a uniform duct, it was shown in equation (26) that
for a locally reacting lining within a circular duct the boundary condition is

iM 0
V . v = Ap- ---- (Ap) (87)Ox
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In this form tile boundary condition is valid for a lining which varies axially. In the

case of a nonunifornl duct and nonuniform mean flow, it. is shown in reference 100

that the correct boundary condition is

.vT_0v = Ap- + i (v V)Vo] (88)

where Vr is the tangential component of mean flow Vo at the duct wall. The deriva-

tive 0/0r is with respect to the curvilinear distance along the duct wall. Equa-
tion (88) is directly obtained from equation (87) by replacing the axial coordinate x

with the tangential coordinate r and adding the last term. In duet applications the

extra term in equation (88) is probably extremely small, since its principal contri-

butions are only large near a stagnation point in the mean flow. Equation (87) is

therefore taken as the appropriate boundary condition.

There are fewer options available for computations of acoustic propagation in
ducts with nonuniform cross sections with mean flow than for comparable problems

without mean flow. They can be categorized as (1) one-dimensional or plane-
wave approximations, (2) perturbation schemes for ducts with slowly varying cross

sections, (3) weighted-residual methods (i.e., Galerkin), and (4) finite-element and
fnite-difference methods.

A particularly usefifl one-dimensional model for unlined ducts has been con-

strutted in reference 101 from a one-dimensional continuity and momentum equa-

tion. Without flow the governing equations can be combined to form Webster's
horn equation. In their investigation they used a shooting technique to investigate

the two-point boundary value problem for wave propagation in a nonuniform duct

carrying a compressible mean flow with specified driving and exit conditions. The

present author has used the field equations of Davis and Johnson with a Runge-Kutta
integration scheme matched to traveling wave solutions in semi-infinite uniform in-

lets and pipes to construct transmission and reflection equations for long-wavelength

propagation. Though unpublished, this approach was used as a check on a more gen-

eral Galerkin formulation to be discussed shortly. King and Karamcheti (ref. 102)

obtained solutions to what is effectively the Davis and Johnson model using the
method of characteristics.

Perturbation methods have been used by several investigators for studies of

acoustic transmission in nonuniform ducts with mean flow. In reference 103 a ray

acoustics approximation was used for the velocity potential for the lowest order

mode described by a generalization of Webster's horn equation. Tam (ref. 104) used

a Born approximation based on a small area variation and studied the scattering
of an acoustic wave incident on a nonuniformity. His flow model was constructed

from the one-dimensional gas dynamics relationships with a superposed transverse

velocity to create flow tangency at the walls. References 105 and 106 extended the

method of multiple scales (ref. 75) to inclnde the case with a sheared mean flow in
a lined duct.

It is difficult to draw general conclusions from these models. However it can

be stated that little scattering effect is seen for acoustic waves incident upon a

nommiformity (and, hence, axial and transverse flow gradients) unless the local

Mach number exceeds 0.6. For higher throat Maeh numbers, scattering becomes
significant (ref. 104). For propagation against the mean flow, an increase in acoustic

pressure near the throat is observed, the increase being very large for high subsonic
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throat Math numbers. Even for near-sonic throat velocities no large attenuation is
observed.

These analytic, or semianalytic, approximations have obvious limitations implied

in the perturbation schemes. In order to relax these restrictions it is necessary to
resort to the Galerkin methods or to finite-element or finite-difference schemes.

The at)t)lication of a Galerkin method or a finite-element analysis to the case

when a mean flow is present is formally the same as when there is no mean flow.

The field equations are considerably more complex, meaning that much more time

is required in the ('omputation of the coefficient matrices in the Galerkin method

and of the element "stiffness matrices" in the finite-element analysis. The actual

solution of the ordinary differential equations in the Galerkin method or of the
algebraic equations in the finite-element analysis is neither more time-consuming

nor more storage dependent than the corresponding operations when flow is absent,

provided that the same level of discretization is used. In actual computations for high

subsonic mean flows, it is found that upstream of the sound source the compression

of the acoustic wavelengths requires a finer discretization than in the no-flow case.

Downstream of the source the opposite is true. On balance, however, it appears that
a finer discretization is required when flow is present.

Acoustic transmission in nonuniform ducts with a general mean flow has been
considered in references 46 and 52. In reference 46 tile Galerkin method was used

with basis fimctions derived from a uniform-duct analysis, and in reference 52 a

Galerkin finite-element analysis was used. The mean flow is derived from one-

dimensional coinpr('ssible flow relations with a simple supert)osition of a transverse

velocity component t)ased on the requirement of flow tangency at the wall. This
is essentially the representation of the flow used in the perturbation solution of

reference 104. Tile techniques of references 46 and 52 give comparable results and

compare well with computations based on the reference 101 formulation at low

frequenc ies.

Reference 107 extended the wave-envelot)e method (re[. 83) to the case of

nonuniform lined (tucts carrying a compressible, sheared mean flow. As previously
noted this method is basically a weighted-residual, or Galerkin, approach with the
refinement that the harmonic wave character of the solution is included in the basis

functions so that only the envelope of the axial variation of the acoustic modal

amplitudes is numerically computed. This would appear to have some implications

in the efficiency of tile axial integration scheme.

Tile weighted-residual computational schemes have been used to shed further

light on the question of attenuation in propagation through high subsonic mean

flows. Results were shown in reference 46 for the transmission of initially planar

two-dimensional waves through a converging-diverging nozzle at low frequency, and
tile results were ('Oral)areal with equivalent one-dimensional calculations based on

the formulation in reference 101. One example was a converging-diverging hard-wall

(tuct with t)rot)agation ot)posite to the flow. The duel throat height was 75 percent

of the inlet and exit duct heights and the nonuniform section was 1.25 duct heights

in length. Math numbers of 0.25, 0.60, and 0.81 in the throat were considered (0.20,

0.40, and 0.48 in the uniform sections). Figure 11 is a plot of the ratio of transmitted

acoustic power to incident acoustic power for nondinlensional frequencies based on

the duct height Hi. (This is actually half the duct height if tile straight wall is
construed as a centerline.)
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The comparison of the one-dimensional and weighted-residual (Galerkin) results is

good up to the frequency where the first higher order mode cuts on. Slight deviations

occur because the weighted-residual model is inherently two dimensional, and even
at low frequencies some two-dimensional effects occur. Of more interest for the

present discussion is the fact that strong acoustic attenuation does not occur. What

little attenuation that is shown in figure 11 is in a narrow frequency band and is the

reactive attenuation of the duct nonuniformity acting as a muffler. This supports the

previous observation that linear theory does not appear to predict the experimentally

observed attenuation in high subsonic flows.

When the flow field can be assumed to be irrotational, the fieht equations become

particularly simple. The continuity equation (9) and the version of the acoustic

momentum equation (11) are in a form well suited for finite-element analysis. In
references 108 and 109 these equations were effectively combined and a finite-element

discretization was carried out based on the "wave-like" equation which results.

The mean flow was generated from a boundary-element method for incompressible

potential flow. A well-known compressibility correction (ref. 110) was then used

to inchlde the major effects of the compressible mean flow. Bomldary conditions,
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including the effect of acoustic lining, were forced on the global "stiffness" matrix.

No attempt was made to match the solution in the nonuniformity region to incident-
and reflected-wave structures at the terminations. The treatment of the termination

conditions limits the practical application of the scheme.

When the mean flow is general and not restricted by the assumption of irro-

tationality, the field equations cannot be combined into a single scalar equation.

Finite-element modeling schemes have been set up in references 52 and lll for this

type of flow, with the field equations in the form of equations (6) and (7) (in ref. 52)

or in the form of equations (5) and (6) (in ref. 111). There are considerable dif-
ferences in the details of the implementation of the Galerkin finite-element scheme.

Two-dimensional flow was considered in reference 52, and natural boundary condi-
tions were used for the duct-wall boundary conditions. A modal matching procedure

was used to match the finite-element solution for the nommiformity to the infinite
inlet and exhaust ducts. This is a direct extension of the formulation for no flow

(ref. 93). Reference III originally used forced boundary conditions, including the

specification of acoustic pressure on the source plane and a modal impedance on the
exit plane. In subsequent development of this scheme, modal boundary conditions

were incorporated at the duct terminations. This work was directed toward the de-

velopment of a very-large-scale, general-purpose duct acoustic computational scheme

and was set up for axisymmetric propagation.

Finite-element methods have been shown to produce results in good agreement

with results from other available computational schemes. Reference l ll shows

excellent agreement with some analytic solutions. Figure 12, taken from refer-
ence 52, shows the power transmission coefficient as a function of the nondimen-

sional frequency based on duct semiheight for the Galerkin method and for the finite-

element method. The geometry is a converging two-dimensional, lined, cosine-shaped

tapered-duct section with a 15-percent contraction. The propagation is against the

flow, which is relatively low at M = 0.36 in the minimum area. The comparison of

the two calculations is very good.

Finite-difference schemes, though placed on a firm hmndation in reference 94,

have not become generally useful. This is undoubtedly because of the simplicity with
which finite-element schemes handle complicated geometries. A second consideration
is the introduction of frontal solution schemes in the finite-element method which

put these methods on a nearly equal footing with explicit finite-difference algorithms
when computer storage is a consideration.

Radiation

It has been noted previously that duct acoustic propagation and radiation are
coupled and cannot be separated in a rigorous treatment. It has also been noted

that most duct propagation analysis has been carried out by ignoring the radiation

aspect. The usual way to avoid it is to assume that the duct is of infinite length and

that the reflection effects at the termination are unimportant. This effectively says
that the radiation process proceeds on the basis of conditions established at the duct

termination by propagation without reflection, and therefore the radiation process

creates no reflections. For lining design this has proven to be an effective approach,

since reflections are relatively unimportant except at frequencies near modal cutoff.

When the radiation pattern itself is of interest, then the problem of acoustic

radiation in the infinite medium surrounding the duct exit must be addressed. In
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this discussion we limit attention entirely to the inlet radiation problem, in which

propagation and radiation occur through an inlet flow field (possibly absent). We
choose not to examine problems in which propagation and radiation occur through

a jet, with the resulting considerations of shear layers.

Radiation from a piston in a plane wall (ref. 112) modeled using the Rayleigh

integral and based on the knowledge of the velocity distribution on the piston is
the classic technique for calculation of the radiation pattern of a flanged duct. At

a duet. termination the velocity distribution on the conceptual piston is determined

by the acoustic field in the duet. In the textbook ease at low frequency, the velocity
distribution is assumed to be uniform and the radiation impedance is computed,

providing a mechanism for connecting the duct propagation (incident and reflected

plane waves) to the radiated field. Levine and Schwinger (ref. 113) considered
radiation from an unbaffied open-end pipe using the Wiener-Hopf method. The duct

propagation and radiation is treated as a coupled system, and both the radiation

pattern and the reflection and transmission coefficients for the duct modes can be
calculated. This Levine and Schwinger formulation has been widely used, but as

in the case of the Rayleigh integral for the baffled termination, it is limited to the

situation when no inlet flow is present.

In order to model rigorously the radiation process when an inlet flow is present, it

is appropriate to use the finite-element method. This modeling method, in contrast
to the finite-difference method, has the advantage of being readily adaptable to the

complex geometry of a turbofan inlet.

When the finite-element method is used, propagation in the duet and radiation
to the far field are included in one model. It is assumed that the inlet flow field

is irrotational. The appropriate field equations are then equations (9) and (11).

Equation (10) is used to compute the local speed of sound from the mean flow

velocity potential. Equations (9) and (11) can be combined in a single "wave-like"

equation in the acoustic velocity potential, this equation requiring as input data the
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mean flow velocity potential, derivatives of the velocity potential, and the local speed
of sound.

Two different finite-element models have been developed. The first to appear was
developed in references 114 and 115 and is an extension of the finite-element model for

duct propagation discussed in references 108 and 109. As noted previously, their field

equation in the acoustic velocity potential is a direct combination of equations (9)
and (11). A Galerkin method is used to formulate the problem and integration

by parts is used to introduce the natural boundary conditions on the duet walls

and what amounts to a radiation condition on a boundary outside the duct. The

source is introduced through use of a forced boundary condition which specifies

acoustic particle velocity on the source plane. The data for their field equation

require first and second derivatives of the mean flow velocity potential (velocity and
spatial derivatives of velocity). These data are generated by modeling the inlet flow
with a boundary-element procedure.

The radiation condition is introduced by representing the acoustic field in terms

of a boundary-element method in the region outside a surface exterior to the

nacelle, which can be called the matching surface. Tile procedure is to solve the

field equations interior to the matching surface using the finite-element procedure.
with the radiation impedance on the matching surface assumed. This allows the

computation of the acoustic potential on the matching surface. This is used to

generate the exterior acoustic field and, hence, a second version of the radiation

impedance. This new impedance is assumed in a new finite-element solution in
the interior. The iterative procedure continues until successive finite-element and

boundary-element calculations agree on tile radiation impedance to some specified

accuracy. After the iteration procedure, the acoustic pressure and particle velocity

can be obtained by suitable processing of the acoustic velocity potential.

The second finite-element model to appear was reported in references 116 and

117. The approach used was a Galerkin formulation based on the field equations (9)

and (11). The authors took advantage of the divergence term in equation (9), which

in the Galerkin scheme leads (upon use of the divergence theorem) to introduction
of natural boundary conditions and to the elimination of the requirement in the

input data for the specification of mean flow velocity spatial derivatives. This makes

it attractive to compute the mean flow field from a velocity-potential formulation
with a finite-element representation on the same mesh as that used for the acoustic

propagation and radiation. The source is modeled in terms of incident and reflected

modes, which are matched to the finite-element solution on the source plane.
The radiation to the far field is also modeled with finite elements which have ill

their shape fimctions the wave character of the far field of a simple source. These

wave-envelope elelnents allow the use of elements which are very large in the radial
direction. With these elements the region between the near field and the far field can

be spanned with a relatively small number of elements. At the far-field boundary
a simple radiation condition can be imposed. The entire problem is cast in finite-

element form so that no iterationis necessary. The solution is carried out with the

frontal solution method of reference 84 at. a modest cost in computer storage.

Examples of the success of the finite-element modeling of turbofan radiation are

shown in figure 13, wherein the finite-element predictions of acoustic radiation from

a turbofan engine are compared with the actual radiation patterns measured in a

flight test program. Tile engine was modified to produce a strong tone in the rn = 13
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angular mode at frequencies dependent on the engine speed. Figure 13 shows the

comparison of theory and measurement for the directivity (SPL vs polar angle from
the inlet centerline) for several nondimensional frequencies (based on the duct radius

at the throat). The frequencies shown span the range from just barely cut on to well

cut on. The agreement is remarkably good, particularly when one considers the

complexities of both the modeling scheme and the flyover test procedure.
A ray acoustics model for radiation has been described in references 118 and 119.

Only sparse details are available, but it is probable that the major advantage of the

method is in its prediction of broadband noise radiation, as opposed to the pure tone

radiation for which the finite-element procedure is particularly appropriate.

The complexity of the computation schemes which are required to compute
acoustic radiation for lined ducts with interior and exterior flows has led Rice and his

co-workers to extend the ideas of modal cutoff ratio to the radiation problem and to
derive approximate expressions for the radiation pattern which are functions of the

modal cutoff ratios for the duct modes. The starting point is the following expression
derived in references 120 and 121 for the mean-square pressure as a function of the

polar angle from the inlet axis ¢o, the modal cutoff ratio flo, and the frequency
rl = _oR/c (where R is the duct radius) for radiation from a flanged duct:

2sin_o¢l-1/fl2o (sin{rl[sin_:o-(1//_o)]})

-P2(¢o) = 7rr/[(1//_o2 ) _ sin2 ¢0]2 (89)

This approximation is valid except for the first few radial modes of high-order angular
modes. The important feature here is that the approximation to the radiation pattern

depends not on the individual modal structure but instead on the cutoff ratio, an

implication that all modes with the same cutoff ratio have the same radiation pattern

for r/being equal. Hence, just as in the suppressor design procedure (refs. 3 and 62

to 65) based on cutoff ratio, it is found that for the simple case of the flanged duct
without flow the radiation pattern also depends on cutoff ratio.

Reference 121 combined this idea, the concept of a modal density function

(ref. 122), and cutoff ratio biasing function to predict the directivity of broadband

(multimodal) fan noise with a substantial degree of success. It was then determined
(ref. 6) that the polar angle at which the peak of the radiated field occurs is a function

of cutoff ratio. The functional dependence on cutoff ratio can be found for no flow,

for inlet flow with no forward-flight effect, and for inlet flow with forward-flight effect.

This observation led to the establishment of corrections of equation (89) for the flow

effect and additionally for the unflanged duct case (ref. 66).

With this development the entire suppression design procedure can be put in
an approximate but vastly simplified context in comparison with the use of the full

numerical models. Such a procedure is desirable for preliminary design iterations.

Nonlinear Duct Acoustics

Nonlinear propagation phenomena in ducts present a field of study which is
potentially as vast as that of the linear theory discussed to this point. In this section
the intention is to address only two problems related to turbofan noise.
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Under certain conditions, principally related to the presence of a shock wave

system on tile fan blades because of supersonic relative tip speeds, acoustic waves
are propagated in the duct with a distinctive spectral content. In addition to the

interaction tones of the Tyler-Sofrin theory (ref. 5), there exist multiple pure tones
which are based on rotor speed rather than on blade passage frequency (refs. 123 to

126). These tones are apparently at least partly due to initially small variations in

the shock wave pattern on the rotor because of nonuniformities in the blades. These
initially small variations are enhanced because of nonlinear effects related to the

shock structure radiated from the blades. In addition, the nonlinear shock structure

produces an attenuation in the duct which is not predicted by linear theory (refs. 123

to 126) but which is related to the decay of shock strength away from the rotor face.

This decay is enhanced by high subsonic inlet, flows and cannot be predicted by linear

acoustic theory.

It. has been previously noted that in high subsonic inlet flows, the fan tones

predicted by tile Tyler-Sofrin theory (ref. 5) show an attenuation not predicted by

linear theory. This attenuation becomes nearly complete when ttle inlet flow becomes
sonic at the throat. It was also previously noted that linear theory does predict a

large increase ill the pressure amplitude for acoustic waves incident upon a throat

where all approaching flow reaches high subsonic flow. This is illustrated in figure 14

(from ref. 127), wherein the pressure magnitude is plotted against the axial distance

for a plane wave approaching a throat with inlet flows of M = 0.75, 0.85, and 0.96.

The sharp pressure rise for M = 0.96 suggests the onset of nonlinear behavior.

A perturbation procedure was used ill reference 128 to show that finite-amplitude

acoustic modes show nonlinear dispersion and that the characteristic velocity of
propagation of acoustic waves becomes dependent on the amplitude of the waves.

Since the wave amplitude grows near the throat, as shown in figure 14, the incident

waves can stop propagating before the mean flow reaches sonic velocity.

In a series of papers (refs. 129 to 131), the method of matched asymptotic

expansions was used to investigate the nonlinear behavior of originally linear planar

acoustic waves passing through the throat region of a duct in which the mean flow
in the throat is transonic. The formation of acoustic shock waves was demonstrated

and, as might be anticipated, it was shown that the nonlinear effects increase with

source strength, frequency, and throat Mach number. The shock waves cause a

substantial dissipation of energy and are the mechanism by which acoustic choking

occurs in the one-dimensional case. The same type of behavior was found in
references 132 and 133 with finite-difference solutions of the one-dimensional Euler

equations, and good agreement with the matched asymptotic expansion results was
also found.

In reference 134 the method of matched asymptotic expansions was extended to

two-dinlensional propagation. As in the one-dimensional case, shock waves develop

ill the acoustic field in the near-sonic mean flow in the duct throat. Coupling between
acoustic modes induces the nonlinear behavior at lower Mach numbers than in the

case of plane-wave propagation. Dispersion plays a major role in this case, whereas
it did not in the one-dimensional case.

Much remains to be learned about nonlinear effects, particularly in complicated

flows with multimodal propagation. This is a fruitful area for future research.
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